Hey Grade 12 Students, your exams are near so work hard.

Composition and Resolution of Concurrent Force Exercise 21.3 | Basic Mathematics Solution [NEB UPDATED]

Exercise 21.3

1) Three forces acting on a particle are in equilibrium, the angle between the first and second is 90° and that between the second and third is 120° find the ratio of the forces

Solution:

Let P,Q and R be the forces acting at O. The angle between third and first = 360° - 90° = 150°.

Using sine law,

Or, $\frac{{\rm{P}}}{{{\rm{sin}}120\infty }}$ = $\frac{{\rm{Q}}}{{{\rm{sin}}150\infty }}$ = $\frac{{\rm{R}}}{{{\rm{sin}}90\infty }}$

Or, $\frac{{\rm{P}}}{{\frac{{\sqrt 3 }}{2}}}$ = $\frac{{\rm{Q}}}{{\frac{1}{2}}}$ = $\frac{{\rm{R}}}{1}$.

Or, $\frac{{\rm{P}}}{{\sqrt 3 }}$ = $\frac{{\rm{Q}}}{1}$ = $\frac{{\rm{R}}}{2}$

So, P:Q:R = $\sqrt 3 $:1:2.

 

2) The sides AB and AC of a triangle ABC are bisected in D and E, show that the resultant of forces represented by BE and DC is represented in magnitude and direction by $\frac{3}{2}\overrightarrow {{\rm{BC}}} $.

Solution:

Using vector addition,

Or,${\rm{\: }}\overrightarrow {{\rm{BE}}} $ = $\overrightarrow {{\rm{BC}}}  + \overrightarrow {{\rm{CE}}} $

= $\overrightarrow {{\rm{BC}}}  + \frac{1}{2}\overrightarrow {{\rm{CA}}} $ ….(i)

Or, $\overrightarrow {{\rm{DC}}} $ = $\overrightarrow {{\rm{DB}}}  + \overrightarrow {{\rm{BC}}} $

= $\frac{1}{2}\overrightarrow {{\rm{AB}}}  + \overrightarrow {{\rm{BC}}} $ ….(ii)

Adding (i) and (ii)

Or, $\overrightarrow {{\rm{BE}}}  + \overrightarrow {{\rm{DC}}} $ = 2$\overrightarrow {{\rm{BC}}} $ + $\frac{1}{2}\overrightarrow {{\rm{CA}}} $ + $\frac{1}{2}\overrightarrow {{\rm{AB}}} $ = 2$\overrightarrow {{\rm{BC}}} $ + $\frac{1}{2}$($\overrightarrow {{\rm{CA}}} $ + $\overrightarrow {{\rm{AB}}} $).

= 2$\overrightarrow {{\rm{BC}}} $ + $\frac{1}{2}\overrightarrow {{\rm{CB}}} $ = 2$\overrightarrow {{\rm{BC}}} $ + $\frac{1}{2}$($\overrightarrow {{\rm{CA}}} $ + $\overrightarrow {{\rm{AB}}} $).

= 2$\overrightarrow {{\rm{BC}}} $ + $\frac{1}{2}\overrightarrow {{\rm{CB}}} $ = 2$\overrightarrow {{\rm{BC}}} $ – $\frac{1}{2}\overrightarrow {{\rm{BC}}} $ = $\frac{3}{2}\overrightarrow {{\rm{BC}}} $.

 

3) Find a point within a quadrilateral such that, if it be acted on by forces represented by the lines joining it to the angular points of the quadrilateral, it will be in equilibrium.

Solution:

Let O be a point within the quadrilateral ABCD such that,

Or, $\overrightarrow {{\rm{OA}}} $ + $\overrightarrow {{\rm{OB}}} $ + $\overrightarrow {{\rm{OC}}} $ + $\overrightarrow {{\rm{OD}}} $ = 0

Or $\overrightarrow {{\rm{OA}}} $ + $\overrightarrow {{\rm{OB}}} $ = 2$\overrightarrow {{\rm{OM}}} $ ….(i)

Where M is the middle point of AB,

Again, $\overrightarrow {{\rm{OC}}} $ + $\overrightarrow {{\rm{OD}}} $ = 2$\overrightarrow {{\rm{ON}}} $ …(ii)

Where N is the middle point of CD.

From (i) amd (ii)

Or, 2$\overrightarrow {{\rm{OM}}} $ + 2$\overrightarrow {{\rm{ON}}} $ = $\overrightarrow {{\rm{OA}}} $ + $\overrightarrow {{\rm{OB}}} $ + $\overrightarrow {{\rm{OC}}} $ + $\overrightarrow {{\rm{OD}}} $

Or, 2$\overrightarrow {{\rm{OM}}} $ + 2$\overrightarrow {{\rm{ON}}} $ = 0

So, $\overrightarrow {{\rm{OM}}}  + \overrightarrow {{\rm{ON}}} $ = 0

Ie. $\overrightarrow {{\rm{OM}}} $ and $\overrightarrow {{\rm{ON}}} $ are equal and opposite.

So, O is the middle point of MN.

Similarly, we can show that O is the middle point of PQ.

So, O is the point of intersection of the line joining the middle points of the opposite sides of a quadrilateral.

 

4) The sides BC and DA of a quadrilateral ABCD are bisected in F and H respectively, show that if two forces parallel and equal to AB and DC act on a particle, then the resultant is parallel to HF and equal to 2 HF.

Solution:

Or, $\overrightarrow {{\rm{AB}}} $ = $\overrightarrow {{\rm{AF}}}  + {\rm{\: }}\overrightarrow {{\rm{FB}}} $.

= $\overrightarrow {{\rm{AH}}}  + \overrightarrow {{\rm{HF}}}  + \overrightarrow {{\rm{FB}}} $ ….(I)

Or, $\overrightarrow {{\rm{DC}}} $ = $\overrightarrow {{\rm{DF}}}  + \overrightarrow {{\rm{FC}}} $.

= $\overrightarrow {{\rm{DH}}} $+ $\overrightarrow {{\rm{HF}}} $ + $\overrightarrow {{\rm{FC}}} $. ….(ii)

Adding (i) and (ii),

Or, $\overrightarrow {{\rm{AB}}} $ + $\overrightarrow {{\rm{DC}}} $ = $\left( {\overrightarrow {{\rm{AH}}}  + \overrightarrow {{\rm{DH}}} } \right)$ + 2$\overrightarrow {{\rm{HF}}} $ – ($\overrightarrow {{\rm{FB}}} $ + $\overrightarrow {{\rm{FC}}} $) = 0 + 2.${\rm{\: }}\overrightarrow {{\rm{HF}}} $ + 0

= 2$\overrightarrow {{\rm{HF}}} $ (So, $\overrightarrow {{\rm{AH}}} $ and $\overrightarrow {{\rm{DH}}} $ are equal and opposite etc.).

 

5) A heavy chain has weights of 10 and 16 kg attached to its ends and hangs in equilibrium over a smooth pulley if the greatest tension of the chain is 20 kg wt., find the weight of the chain.

Solution:

Let A and B ne the ends of the chain to which the weight of 10kgs, and 16kgs are attached and C be the highest point of the chain on the pulley. As,20kgs is the greatest tension of the chain,

So,

Weight of AC + 10kgs = 20kgx

And Weight of BC + 16kgs = 20kgs

Adding we get,

Weight of (AC + BC) + 26 = 40.

Or, Weight of chain = 40 – 26 = 14kgs.

 

6) Two men carry a weight 50N between two strings fixed to the weight one string is inclined at 30° to the vertical and the other at 60", find the tension of each string.

Solution:

Let OA and OB be two strings inclined at an angle 30° and 60° with the vertical CO respectively and T1 and T2 be the tensions along OA and OB respectively. The weight 50N is vertically downwards from O.

Now, by Lami’s theorem, we have,

Or, $\frac{{{{\rm{T}}_1}}}{{\sin \left( {{\rm{BOC}}} \right)}}$ = $\frac{{{{\rm{T}}_2}}}{{\sin \left( {{\rm{COA}}} \right)}}$ = $\frac{{50}}{{\sin \left( {90\infty } \right)}}$.

Or, $\frac{{{{\rm{T}}_1}}}{{{\rm{sin}}120\infty }}$ = $\frac{{{{\rm{T}}_2}}}{{{\rm{sin}}150\infty }}$ = $\frac{{50}}{1}$.

Or, $\frac{{{{\rm{T}}_1}}}{{\frac{{\sqrt 3 }}{2}}}$ = $\frac{{{{\rm{T}}_2}}}{{\frac{1}{2}}}$ = 50,

So, T1 = 50 * $\frac{{\sqrt 3 }}{2}$ = 25$\sqrt 3 $. N.

And T2 = 50 * $\frac{1}{2}$ = 25N.

 

7) A body weighing 4 N is supported by a string attached to a fixed point and is pulled from the vertical by a horizontal force of 3 N. Find the angle the string will make with the vertical and the tension of the string.

Solution:

Let $\angle $AOB = α. Let T be the tension of the sting,

Using Lami’s theorem,

Or, $\frac{{\rm{T}}}{{{\rm{sin}}90\infty }}$ = $\frac{3}{{\sin \left( {180\infty  - \alpha } \right)}}$ = $\frac{4}{{\sin \left( {90\infty  + \alpha } \right)}}$.

Or, $\frac{{\rm{T}}}{1}$ = $\frac{3}{{{\rm{sin}}\alpha }}$ = $\frac{4}{{{\rm{cos}}\alpha }}$

So, tanα= $\frac{3}{4}$.

i.e. sinα = $\frac{3}{5}$

or, α= sin-1$\left( {\frac{3}{5}} \right)$.

T = $\frac{3}{{{\rm{sin}}\alpha }}$ = $\frac{3}{{\frac{3}{5}}}$ = 5N.

 

8) A body of weight 65 N is suspended by two strings of lengths 5 and 12 m attached to two points in the same horizontal line whose distance apart is 13m; find the tensions of the strings.

Solution:

OA = 5m, OB = 12m, AB = 13m

OA2 + OB2 = 25 + 144.

= 169 = (13)2

= AB2

So, $\angle $AOB = 90°.

Let $\angle $OBA = θ,

Then, $\angle $BOC = 90° - θ.

And $\angle $AOC = θ

Let T1and T2 be the tensions of the strings OA and OB respectively,

Using Lami’s theorem.

Or, $\frac{{{{\rm{T}}_1}}}{{\sin \left( {180\infty  - 90\infty  + \theta } \right)}}$ = $\frac{{{{\rm{T}}_2}}}{{\sin \left( {180\infty  - \theta } \right)}}$ = $\frac{{65}}{{{\rm{sin}}90\infty }}$

Or, $\frac{{{{\rm{T}}_1}}}{{{\rm{cos}}\theta }}$ = $\frac{{{{\rm{T}}_2}}}{{{\rm{sin}}\theta }}$ = $\frac{{65}}{1}$.

So, T1 = 65.cosθ = 65 * $\frac{{12}}{{13}}$ = 60N.

T2 = 65sinθ = 65 * $\frac{5}{{13}}$ = 25N.

 

9) The ends of an inelastic and weightless string 0.17 m long are attached to two points 0.13 m apart in the same horizontal line and a weight of 4 N is attached to string 0.05 m from one end. Find the tension in each portion of the string.

Solution:

OA = 0.05m, OB = 0.12m

AB = 0.13m

OA2 + OB2 = (5cm)2 + (12cm)2

= 25 + 144.

= 169 = (13cm)2 = AB2

So, $\angle $ AOB = 90°.

If $\angle $OBC = θ, then $\angle $BOC = 90° - θ.

And $\angle $AOC = θ.

Let T1 and T2 be the tensions of the strings OA and OB.

Using Lami’s theorem,

Or, $\frac{{{{\rm{T}}_1}}}{{\sin \left( {180\infty  - 90\infty  + \theta } \right)}} = \frac{{{{\rm{T}}_2}}}{{\sin \left( {180\infty  - \theta } \right)}} = \frac{4}{{{\rm{sin}}90\infty }}$.

Or, $\frac{{{{\rm{T}}_1}}}{{{\rm{cos}}\theta }} = \frac{{{{\rm{T}}_2}}}{{{\rm{sin}}\theta }} = \frac{4}{1}$.

So, T1 = 4cosθ = 4 * $\frac{{12}}{{13}}$ = $\frac{{48}}{{13}}$N = 3.69N

T2 = 4sinθ = 4 * $\frac{5}{{13}}$ = $\frac{{20}}{{13}}$N = 1.54N.

 

10) A uniform sphere of weight 3 N rests in contact with a smooth vertical wall. It is supported by a string whose length equals the radius of the sphere, joining a point on the surface of the sphere to a point of the wall. Calculate the tension in the string and the reaction of the wall.

Solution:

A is the point of contact of the sphere and the vertical wall. String BC = the radius OA = OB and $\angle $OAC = 90°.

So, OAB is an equilateral triangle,

So, $\angle $AOB = 60°.   [OB = BC and $\angle $OAC = 90°]

Let R be the normal reaction. The weight is vertical. Let T be the tension on the string,

Or, $\frac{{{{\rm{T}}_1}}}{{{\rm{sin}}90\infty }} = \frac{{\rm{R}}}{{{\rm{sin}}150\infty }} = \frac{3}{{{\rm{sin}}120\infty }}$

Or, $\frac{{{{\rm{T}}_1}}}{1} = \frac{{\rm{R}}}{{\frac{1}{2}}} = \frac{3}{{\frac{{\sqrt 3 }}{2}}}$.

So, T1 = 2$\sqrt 3 $N = 2 * 1.73N = 3.46N.

R = $\sqrt 3 $N = 1.73N.

 

11) Forces P, Q, R acting along OA, OB, OC where O is the circumcenter of the triangle ABC, are in equilibrium, show that

Solution:

Or, $\angle $BOC = 2A, $\angle $COA = 2B, and $\angle $AOB = 2C.   [O is the centre of circum circle ABC]

Using Lami’s theorem, 

(i) $\frac{{\rm{P}}}{{{\rm{sin}}\angle {\rm{BOC}}}}$ = $\frac{{\rm{Q}}}{{{\rm{sin}}\angle {\rm{COA}}}}$ = $\frac{{\rm{R}}}{{{\rm{sin}}\angle {\rm{AOB}}}}$.

Or, $\frac{{\rm{P}}}{{{\rm{sin}}2{\rm{A}}}} = \frac{{\rm{Q}}}{{{\rm{sin}}2{\rm{B}}}} = \frac{{\rm{R}}}{{{\rm{sin}}2{\rm{C}}}}$.

Or, $\frac{{\rm{P}}}{{2{\rm{sinA}}.{\rm{cosA}}}}$ = $\frac{{\rm{Q}}}{{2{\rm{sinB}}.{\rm{cosB}}}}$ = $\frac{{\rm{R}}}{{2{\rm{sinC}}.{\rm{cosB}}}}$

Or, $\frac{{\rm{P}}}{{{\rm{acosA}}}} = \frac{{\rm{Q}}}{{{\rm{bcosB}}}} = \frac{{\rm{R}}}{{{\rm{ccosC}}}}$$\left[ {\frac{{\rm{a}}}{{{\rm{sinA}}}} = \frac{{\rm{b}}}{{{\rm{sinB}}}} = \frac{{\rm{c}}}{{{\rm{sinC}}}} = 2{\rm{R}}} \right]$

 

(ii) $\frac{{\rm{P}}}{{{\rm{acosA}}}} = \frac{{\rm{Q}}}{{{\rm{bcosB}}}} = \frac{{\rm{R}}}{{{\rm{ccosC}}}}$.

Or, $\frac{{\rm{P}}}{{\frac{{{\rm{a}}\left( {{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}} \right)}}{{2{\rm{bc}}}}}} = \frac{{\rm{Q}}}{{\frac{{{\rm{b}}\left( {{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}} \right)}}{{2{\rm{ca}}}}}} = \frac{{\rm{R}}}{{\frac{{{\rm{c}}\left( {{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}} \right)}}{{2{\rm{ab}}}}}}$

Or, $\frac{{\rm{P}}}{{{{\rm{a}}^2}\left( {{{\rm{b}}^2} + {{\rm{c}}^2} - {{\rm{a}}^2}} \right)}} = \frac{{\rm{Q}}}{{{{\rm{b}}^2}\left( {{{\rm{c}}^2} + {{\rm{a}}^2} - {{\rm{b}}^2}} \right)}} = \frac{{\rm{R}}}{{{{\rm{c}}^2}\left( {{{\rm{a}}^2} + {{\rm{b}}^2} - {{\rm{c}}^2}} \right)}}$.

 

12) O is the orthocentre of the triangle ABC. Forces P, Q, R acting along OA, OB, OC are in equilibrium. Prove that: $\frac{{\rm{P}}}{{{\rm{BC}}}} = \frac{{\rm{Q}}}{{{\rm{CA}}}} = \frac{{\rm{R}}}{{{\rm{AB}}}}$.

Solution:

Or, $\angle $CBF = 90°- C.

Or, $\angle $BCF = 90° - B.

From triangle BOC,

So, 90° - C + 90° - B + $\angle $BOC = 180°.

So, $\angle $BOC = B + C = 180° - A.

Similarly, $\angle $COA = 180° - B.

And $\angle $AOD = 180° - C.

Using lami’s theorem,

Or, $\frac{{\rm{P}}}{{\sin \left( {180\infty  - {\rm{A}}} \right)}} = \frac{{\rm{Q}}}{{\sin \left( {180\infty  - {\rm{B}}} \right)}} = \frac{{\rm{R}}}{{\sin \left( {180\infty  - {\rm{C}}} \right)}}$.

Or, $\frac{{\rm{P}}}{{{\rm{sinA}}}} = \frac{{\rm{Q}}}{{{\rm{sinB}}}} = \frac{{\rm{R}}}{{{\rm{sinC}}}}$.

Or, $\frac{{\rm{P}}}{{\rm{a}}} = \frac{{\rm{Q}}}{{\rm{b}}} = \frac{{\rm{R}}}{{\rm{c}}}$.

Or, $\frac{{\rm{P}}}{{{\rm{BC}}}} = \frac{{\rm{Q}}}{{{\rm{CA}}}} = \frac{{\rm{R}}}{{{\rm{AB}}}}$.

 

13) 13 ABC is a triangle and D, E, F are the middle points of the sides BC, CA, AB respectively. Show that the forces represented by the straight lines AD, BE, CF acting at a point are in equilibrium.

Solution:

Or, $\overrightarrow {{\rm{AD}}} $ = $\overrightarrow {{\rm{AB}}}  + \overrightarrow {{\rm{BD}}} $ = $\overrightarrow {{\rm{AB}}} $ + $\frac{1}{2}\overrightarrow {{\rm{BC}}} $.

Or, $\overrightarrow {{\rm{BE}}} $ = $\overrightarrow {{\rm{BC}}}  + \overrightarrow {{\rm{CE}}} $ = $\overrightarrow {{\rm{BC}}} $ + $\frac{1}{2}\overrightarrow {{\rm{CA}}} $.

Or, $\overrightarrow {{\rm{CF}}} $ = $\overrightarrow {{\rm{CA}}} $ + $\overrightarrow {{\rm{AF}}} $ = $\overrightarrow {{\rm{CA}}} $ + $\frac{1}{2}\overrightarrow {{\rm{AB}}} $.

Adding,

Or, $\overrightarrow {{\rm{AD}}} $ + $\overrightarrow {{\rm{BE}}} $ + $\overrightarrow {{\rm{CF}}} $ = $\overrightarrow {{\rm{AB}}} $ + $\frac{1}{2}\overrightarrow {{\rm{BC}}} $ + $\overrightarrow {{\rm{BC}}} $ + $\frac{1}{2}\overrightarrow {{\rm{CA}}} $ + $\overrightarrow {{\rm{CA}}} $ + $\frac{1}{2}\overrightarrow {{\rm{AB}}} $.

= $\frac{1}{2}\left( {\overrightarrow {{\rm{AB}}}  + \overrightarrow {{\rm{BC}}}  + \overrightarrow {{\rm{CA}}} } \right)$ = $\frac{3}{2}\left( {\overrightarrow {{\rm{AC}}}  + \overrightarrow {{\rm{CA}}} } \right)$ = 0.

So, the forces represented by AD,BE and CF are in equilibrium.

 

14) A body of weight 20 N, which hangs by a string is pushed to one side by a horizontal force so that the string makes an angle of 60° with the vertical, find the horizontal force and the tension of the string.

Solution:

Or, $\angle $AOB = 60°.

Let P be the horizontal force and T be the tension of the string,

Using Lami’s theorem,

Or, $\frac{{\rm{P}}}{{{\rm{sin}}120\infty }}$ = $\frac{{\rm{T}}}{{{\rm{sin}}90\infty }}$ = $\frac{{20}}{{{\rm{sin}}150\infty }}$.

Or, $\frac{{\rm{P}}}{{\frac{{\sqrt 3 }}{2}}}$ = $\frac{{\rm{T}}}{1}$ = $\frac{{20}}{{\frac{1}{2}}}$.

Or, $\frac{{2{\rm{P}}}}{{\sqrt 3 }}$ = $\frac{{\rm{T}}}{1}$ = 40.

So, P = 20$\sqrt 3 $N, T = 40N.

 

15) A heavy chain of length 9m and weighing 18 N has a weight of 6 N attached to one end is in equilibrium hanging over a smooth peg. What length of the chain is on each side?

Solution:

Total length of the chain = 9m, AB = xm.

Length of the part of the chain AC = (9 – x)m

Total wt. of the chain = 18N.

Wt. of chain of length 1m = $\frac{{18}}{9}$ = 2N.

Wt. of chain of length xm = 2x.

Wt.of chain of length (9 – x)m = 2(9 – x).

By the question,

Or, 6 + 2x = 2(9 – x).

Or, 6 + 2x = 18 – 2x.

Or, 4x = 12.

So, x = 3m.

Length AB = xm = 3m, Length AC = (9 – x) = 6m.

 

16) A uniform plane lamina in the form of a rhombus, one of whose angles is 120°, is supported by two forces applied at the centre in the directions of the diagonals so that one side of the rhombus is horizontal, show that if P and Q be the forces and P be the greater. then P² = 3Q2.

Solution:

ABCD is a rhombus with diagonals AC and BD intersecting O.

Or, $\angle $ABC = 120°, $\angle $BAD = 60°.

Let W be the weight of the rhombus. Along the diagonals AC and BD forces are applied so that AB is horizontal. WMN is vertical,

Or, $\angle $OBA = 60°.

So, $\angle $BOM = vert. opp $\angle $DON = 30°.

Similarly, $\angle $AOM = vert, opp $\angle $CON = 60°.

So, $\angle $DON <$\angle $CON, the greater force P must be along BD and Q along AC.

Or, $\frac{{\rm{P}}}{{\sin \left( {90\infty  + 30\infty } \right)}}$ = $\frac{{\rm{Q}}}{{\sin \left( {90\infty  + 60\infty } \right)}}$.

Or, sin150°.P = Q.sin120°.

Or, $\frac{1}{2}$.P = Q.$\frac{{\sqrt 3 }}{2}$.

So, P2 = 3Q2

Getting Info...

About the Author

A free online educational resource provider.

2 comments

  1. Great job 👍 Hope all students will give a positive vibe
  2. Thank you sir.
Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.