Hey Grade 12 Students, your exams are near so work hard.

Computational Methods Exercise 20.1 | Basic Mathematics Solution [NEB UPDATED]

Exercise 20.1

1) Apply the method of successive bisection to find the

a) Square root of 3 within 2 places of decimal in (1,2)

Solution:

Let x be the square root of 3.

Let f(x) = x2 – 3

f(1) = 1 – 3 = 2 = -ve

f(2) = (2)2 – 3 = 1 = +ve

f(1.5) = (1.5)2 – 3 = -0.75

So, the root lies between 1.5 and 2

Or, $\frac{{1.5 + 2}}{2}$ = 1.75

f(1.75) = (1.75)2 = 0.0625

So, the root lies between 1.5 and 1.75.

Or, $\frac{{1.5 + 1.75}}{2}$ = 1.625.

f(1.625) = (1.625)2 – 3 = 0.359375.

So, the root lies between 1.625 and 1.75.

Or, $\frac{{1.625 + 1.75}}{2}$ = 1.71875

So, f(1.71875) = (1.71875)2 – 3 = -0.045898

So, the root lies in between 1.71875 and 1.75

So, $\frac{{1.71875 + 1.75}}{2}$ = 1.734375

Or, f(1,734375) = (1.734375)2 – 3 = 0.0080566 which is small enough.

So, the required square root of 3 = 1.734375.

= 1.73.

So, the square root of 3 is 1.73.

 

b) Square root of 123 within 2 places of decimal in (11, 12)

Solution:

Let x be the square root of 123.

Let f(x) = x2 – 123

Or, f(11) = 121 – 123 = -2

And f(12) = 144 – 123 = 21

Or, $\frac{{11 + 12}}{2}$ = 11.5

Or, f(11.5) = (11.5)2 – 123 = 9.25

So, the root lies in between 11 and 11.5

Or, $\frac{{11 + 11.5}}{2}$ = 11.25.

Or, f(11.25) = (11.25)2 – 123 = 3.5625.

So, the root lies in between 11 and 11.25

Or, $\frac{{11 + 11.25}}{2}$ = 11.125

Or, $\frac{{11 + 11.125}}{2}$ = 11.0625

Or, f(11.0625) = (11.0625)2 – 123 = -0.62109

So, the root lies between 11.0625 and 11.125

Or, $\frac{{11.0625 + 11.125}}{2}$ = 11.09375.

Or, f(11,09375) = (11.09375)2 – 123 = 0.071289

So, the root lies between 11.0625 and 11.09375.

So, $\frac{{11.0625 + 11.09375}}{2}$ = 11.078125.

Or, f(11.078125) = (11.078125)2 – 123 = -0.275146.

So, the root lies in between 11.078125 and 11.09375

So, $\frac{{11.078125 + 11.09375}}{2}$ = 11.0859.

Or, f(11.8059) = (11.8059)2 – 123 = -0.10282.

So, the root lies between 11.0859 and 11.09375.

Or, $\frac{{11.0859 + 11.09375}}{2}$ = 11.089825.

Or, f(11.089825) = (11.089825)2 – 123 = -0.01578

So, the root = 11.089825.

So, the square root of 123 = 11.09.

c) The approximate value of $\sqrt 2$ within an error of 10-3

Solution:

Let the square of 2 be x.

Then x2 – 2 = 0.

Let f(x) = x2 – 2

Or, f(1) = 1 – 2 = -1 < 0

Or, f(2) = 4 – 2 = 2 > 0

Or, f(1).f(2) = -1.2 = -2 < 0.

So, the root lies between 1 and 2.

Or, $\frac{{1 + 2}}{2}$ = 1.5

Or, f(1.5) = (1.5)2 – 2 = 0.25 > 0

So, the root lies between 1 and 1.5.

Or, $\frac{{1 + 1.5}}{2}$ = 1.25.

Or, f(1.25) = (1.25)2 – 2 = 0.4375 < 0.

SO, the root lies in between 1.25 and 1.5.

Or, $\frac{{1.25 + 1.5}}{2}$ = 1.375.

Or, f(1.375) = (1.375)2 – 2 = 0.109375 < 0.

So, the root lies between 1.375 and 1.5.

Or, $\frac{{1.375 + 1.5}}{2}$ = 1.4375.

Or, f(1.4375) = (1.4375)2 – 2 = -0.6640625 > 0.

So, the root lies in between 1.375 and 1.4375.

Or, $\frac{{1.375 + 1.4375}}{2}$ = 1.40625.

Or, f(1.40625) = (1.40625)2 – 2 = -0.2246.

So, the root les in between 1.40625 and 1.4325

Or, $\frac{{1.40625 + 1.421875}}{2}$ = 1.4140625.

Or, f(1.4140625) = (1.4140625)2 – 2 = 0.000427.

Whose absolute value is less than 10-3.

So, the required square root = 1.4141.

d) The value of $\sqrt[3]{{10}}$ with error not more than 0.03

Solution:

Let the cube of 10 be x.

Then x3 – 10 = 0

Let f(x) = x3 – 10

Or, f(2) = (2)3 – 10 = - 2 < 0.

Or, f(3) = (3)3 – 10 = 17 > 0.

Or, f(2).f(3) = -2 * 17 = -34 < 0.

So, the root lies between 2 and 3.

Or, $\frac{{2 + 3}}{2}$ = 2.5

Or, f(2.5) = (2.5)2 – 10 = 5.625 > 0.

So, the root lies between 2 and 2.5.

Or, $\frac{{2 + 2.5}}{2}$ = 2.25.

Or, f(2.1875) = (2.1875)3 – 10 = 0.4675 > 0.

The root lies between 2.125 and 2.1875.

Or, f(2.25) = (2.25)3 – 10 = 1.3906 > 0.

So, the root lies between 2 and 2.25.

Or, $\frac{{2.125 + 2.25}}{2}$ = 2.1875.

Or, $\frac{{2 + 2.25}}{2}$ = 2.125.

Or, f(2.125) = (2.125)3 – 10 = -0.40429 < 0.

So, the root lies between 2.125 and 2.25.

Or, $\frac{{2.125 + 2.1875}}{2}$ = 2.15625.

Or, f(2,15625) = (2.15625)3 – 10 = 0.025299 which is less than 0.03

So, the root is 2.15625.

2) Apply the method of successive bisection to find the root of the equation:

a) x2 +x-4=0 in (1, 2) correct to two places of decimals.

Solution:

Let f(x) = x2 + x – 4.

Or, f(1) = 1 + 1 – 4 = - 2 < 0.

Or, f(2) = 4 + 2 – 4 = 2 > 0

Or, f(1).f(2) = -2 * 2 = -4 < 0.

So, the root lies between 1 and 2.

Or, $\frac{{1 + 2}}{2}$ = 1.5

Or, f(1.5) = (1.5)2 – 4 = -0.25 < 0

So, the root lies between 1.5 and 2.

Or, $\frac{{1.5 + 2}}{2}$ = 1.75.

Or, f(1.75) = (1.75)2 + 1.75 – 4 = 0.8125.

So, the root lies between 1.5 and 1.75.

Or, $\frac{{\left( {1.5 + 1.75} \right)}}{2}$ = 1.625.

Or, f(1.625) = (1.625)2 + 1.625 – 4 = 0.265625.

So, the root lies in between 1.5 and 1.625.

Or, $\frac{{1.5 + 1.625}}{2}$ = 1.5625

f(1.5625) = (1.5625)2 + 1.5625 – 4 = 0.0039025.

So, the root is 1.5626.

b) 2x2-x-5=0 correct to 4 places of decimals within an error of 0.05.

Solution:

 

c) x3-4x+1 = 0 lying between 1 and 2 correct to two places of decimal.

Solution:

Let f(x) = x3 – 4x + 1

Or, f(1) = 1 – 4 + 1 = -2.

And f(2) = 8 – 8 + 1 = 1.

Or, $\frac{{1 + 2}}{2}$ = 1.5

Or, f(1.5) = (1.5)3 – 4 * 1.5 + 1 = -1.625

So, the root lies between 1.5 and 2.

Or, $\frac{{1.5 + 2}}{2}$ = 1.75.

Or, f(1.75) = (1.75)3 – 4 * 1.75 + 1 = -0.640625.

So, the root lies between 1.75 and 2.

Or, $\frac{{1.75 + 2}}{2}$ = 1.875.

Or, f(1.875) = (1.875)3 – 4 * 1.875 + 1 = 0.0917968.

So,  the root lies in between 1.75 and 1.875.

Or, $\frac{{1.75 + 1.875}}{2}$ = 1.8125.

Or, f(1.8125) = (1.8125)3 – 4 * 1.8125 + 1 = -0.295654.

So, the root lies in between 1.825 and 1.875.

Or, $\frac{{1.8125 + 1.875}}{2}$ = 1.84375.

Or, f(1.84375) = (1.84375)3 – 4 * 1.84375 + 1 = -0.1073.

So, the root lies between 1.84375 and 1.875.

Or, $\frac{{1.84375 + 1.875}}{2}$ = 1.859375.

Or, f(1.859375) = (1.859375)3 – 4 * 1.84375 + 1 = -0.00912585.

So, the root is 1.859375.

So, the required root is 1.86.

d) x3-x-4=0 lying between 1 and 2 correct to three places of decimal.

Solution:

Let f(x) = x2 – x – 4

Or, f(1) = 1 – 1 – 4 = -4.

And f(2) = 8 – 2 – 4 = 2.

Or, $\frac{{1 + 2}}{2}$ = 1.5

Or, f(1.5) = (1.5)3 – (1.5) – 4 = -2.125.

So, the root lies between 1.5 and 2.

Or, $\frac{{1.5 + 2}}{2}$ = 1.75

Or, f(1.75) = (1.75)3 – 1.75 – 4 = -0.390625.

So, the root lies in between 1.75 and 2.

Or, $\frac{{1.75 + 2}}{2}$ = 1.875.

Or, f(1.875) = (1.875)3 – 1.875 – 4 = 0.7167968.

So, the root lies between 1.75 and 1.875.

Or, $\frac{{1.75 + 1.875}}{2}$ = 1.8125.

Or, f(1.8125) = (1.8125)3 – 1.8125 – 4 = 0.1418.

So, the root lies in between 1.75 and 1.8125

Or, $\frac{{1.75 + 1.8125}}{2}$ = 1.78125.

Or, f(1.78125) = (1.78125)3 – 1.78125 – 4 = -0.129608.

So, the root lies between 1.78125 and 1.8125.

Or, $\frac{{1.78125 + 1.8125}}{2}$ = 1.796875.

Or, f(1.796875) = (1.796875)3 – 1.796875 – 4.

= 0.00480.

So, the root is 1.796875 = 1.797.

e) x2-2x-5= 0 in (2, 3) correct to three places of decimal.

[Note: In textbook mistakenly x3-2x-5= 0 is given but it is x2-2x-5= 0]

Solution:

f(x) = x2 – 2x – 5

Or, f(2) = 8 – 4 – 5 = -1

And f(3) = 27 – 6 – 5 = 16.

Or, $\frac{{2 + 3}}{2}$ = 2.5.

Or, f(2.5) = (2.5)3 – 2 * 2.5 – 5 = 5.625.

So, the root lies between 2 and 2.5.

Or, $\frac{{2 + 2.5}}{2}$ = 2.25.

Or, f(2.25) = (2.25)3 – 2 * 2.25 – 5 = 1.890625.

Or, f(2.25) = (2.25)3 – 2 * 2.25 – 5 = 1.890625.

The root lies between 2 and 2.25.

Or, $\frac{{2 + 2.25}}{2}$ = 2.125.

Or, f(2.125) = (2.125)3 – 2 * 2.125 – 5 = 0.345703.

So, the root lies between 2 and 2.125.

Or, $\frac{{2 + 2.125}}{2}$ = 2.0625.

Or, f(2.0625) = (2.0625)3 – 2 * 2.0625 – 5 = -0.351318.

So, the root lies between 2.0625 and 2.125.

Or, $\frac{{2.0625 + 2.125}}{2}$ = 2.09375.

Or, f(2.09375) = (2.09375)3 – 2 * 2.09375 – 5.

= 0.00894164.

So, the root = 2.09375 = 2.094.

f) 3x-2x=0 correct to 3 places of decimals with error less than 0.005.

Solution:

 

g) ex-2x-1= 0 correct to 2 places of decimals within an accuracy of 10-2.

Solution:

Let f(x) = ex – 2x – 1

Or, f(1) = 2.71828 – 2 * 1 – 1 = -0.28172.

Or, f(2) = 7.38906 – 2 * 2 – 1 = 2.38906.

Or, f(1).f(2) = -ve.

So, the root lies between 1 and 2.

Or, $\frac{{1 + 2}}{2}$ = 1.5

Or, f(1.5) = 4.48169 – 2 * 1.5 – 1 = 0.48169.

So, the root lies between 1 and 1.5.

Or, $\frac{{1 + 1.5}}{2}$ = 1.25

Or, f(1.25) = e1.25 – 2 * 1.25 – 1 = -0.009657.

So, the root = 1.25.

h) 2x-logex = 7 in (4, 5) with error less than 0.06.

Solution:

Let f(x) = 2x – logex – 7

Or, f(4) = 2 * 4 – log4 – 7 = -0.3863 < 0.

Or, f(5) = 2 * 5 – log5 – 7 = 1.3905 > 0.

Or, f(4).f(5) = -0.3863 * 1.3905 = -ve.

So, the root lies between 4 and 5.

Or, $\frac{{4 + 5}}{2}$ = 4.5

Or, f(4.5) = 2 * 4.5 – log4.5 – 7 = 0.4959 > 0.

So, the root lies between 4.0 and 4.5.

Or, $\frac{{4.0 + 4.5}}{2}$ = 4.25.

Or, f(4.25) = 2 * 4.25 – log4.25 – 7 = 0.05308 < 0.06.

So, the root = 4.25.

 

3.a) Show that the equation f(x) = x3 - 18 = 0 has no negative root and one positive root, and find the positive root correct to 3 places of decimal in the interval (2, 3). Use method of bisection.

Solution:

f(x) = x3 – 18

Listing the sign of terms of f(x), we have,

+ $ - $

There is only one change. So, there is one positive root.

Again, f(-x) = (-x)3 – 18 = -x3 – 18.

There is no change in sign. So, there is no negative root.

Or, f(x) = x3 – 18.

Or, f(2) = (2)3 – 18 = -10.

And f(3) = (3)3 – 18 = 9.

Or, $\frac{{2 + 3}}{2}$ = 2.5.

f(2.5) = (2.5)3 – 18 = -2.375.

So, the root lies between 2.5 and 3.

Or, $\frac{{2.5 + 3}}{2}$ = 2.75.

Or, f(2.75) = (2.75)3 – 18 = 2.796875.

So, the root lies between 2.5 and 2.75

Or, $\frac{{2.5 + 2.75}}{2}$ = 2.625.

Or, f(2.625) = (2.625)3 – 18 = 0.0087989.

The root lies between 2.5 and 2.625.

Or, f(2.5625) = (2.5625)3 – 18 = -1.173583.

So, the root lies between 2.5625 and 2.625.

Or, $\frac{{2.5625 + 2.625}}{2}$ = 2.59375.

Or, f(2.59375) = (2.59375)3 – 18 = -0.550445556.

So, the root lies in between 2.59375 and 2.625.

Or, $\frac{{2.59375 + 2.625}}{2}$ = 2.609375.

Or, f(2.609375) = (2.609375)3 – 18 = -0.2331886.

So, the root lies between 2.609375 and 2.625

Or, $\frac{{2.609375 + 2.625}}{2}$ = 2.6171875.

Or, f(2.617185) = (2.617185)3 – 18 = -0.073128223.

So, the root lies between 2.6171875 and 2.625.

Or, $\frac{{2.6171875 + 2.625}}{2}$ = 2.62109375.

Or, f(2.62109375) = (2.62109375)3 – 18 = 0.007212

So, the root is 2.62109 = 2.621.

b) Show that the equation f(x) = 2x³-5x+2=0 has one negative root and one positive root between 1 and 2. Using method of bisection, find a positive root of the equation with error less than 10-1.

Solution:

f(x) = 2x3 – 5x + 2 = 0.

There are two sign change. Thus, there are two positive roots.

Or, f(-x) = 2(-x)3 – 5(-x) + 2 = -2x3 + 5x + 2.

There is only one change in sign, So, there is only one negative root.

Or, f(1) = 2 * 1 – 5 * 1 + 2 = -1 < 0.

Or, f(2) = 2 * 8 – 5 * 2 + 2 = 8 > 0.

Or, f(1) .f(2) = -1 * 8 = -8 < 0.

So, One positive root lies between 1 and 2.

Or, $\frac{{1 + 2}}{2}$ = 1.5.

Or, f(1.5) = 2 * (1.5)3 – 5 * 1.5 + 2 = 1.25 > 0.

So, the root lies in between 1.125 and 1.5

Or, $\frac{{1 + 1.125}}{2}$ = 1.125.

Or, f(1.125) = 2 * (1.125)3 – 5 * 1 * 1.125 + 2 = -0.7774 < 0.

So, the root lies between 1.125 and 1.5.

Or, $\frac{{1.125 + 1.5}}{2}$ = 1.3125.

Or, f(1.3125) = 2 * (1.3125)3 – 5 * 1.3125 + 2

= 0.04052 which is less than 10-1.

So, the required root = 1.3125.

 

4. a) How many iteration (bounds) do you need to get the root if you start with a = 2 and b =3 and the tolerance is 10-4 ?

Solution:

$\frac{{\left| {{\rm{b}} - {\rm{a}}} \right|}}{{{2^{\rm{i}}}}}$< 10-4.

à$\frac{{3 - 2}}{{{2^{\rm{i}}}}}$< 10-4.

à 2-i< 10-4.

à -i.log2 < -4.

à i >$\frac{4}{{{\rm{log}}2}}$ = $\frac{4}{{0.3010}}$ = 13.29.

So, 14 iterations ensure approximate root.

b) If (0) = -1 and f(8) = 1, how many iteration of bisections of the interval will be required to find an approximation to the root of f(x) accurate to 0.25?

Solution:

 

c) Find the minimum number of iterations required for the solution of the equation x2-3x-8=0 in the interval (2, 3) using bisection method within an accuracy of 10-3. Also, find an approximate root correct to 4 decimal places within an accuracy of 10-2.

Solution:

 f(x) = x2 – 3x – 8 = 0.

Or, a = 2, b = 3, ԑ1 = 10-3.

Or, $\frac{{\left| {{\rm{b}} - {\rm{a}}} \right|}}{{{2^{\rm{i}}}}}$< ԑi.

Or, $\frac{{3 - 2}}{{{2^{\rm{i}}}}}$< 10-3.

Or, 2i> 103.

Or, i.log102 > 3log1010 = 3.

Or, i >$\frac{3}{{{{\log }_{10}}2}}$ = 9.9658 $ \approx $ 10.

So, the minimum number of iteration = 10.

Or, f(2) = (2)3 – 3 * 2 – 8 = -6 < 0.

Or, f(3) = (3)3 – 3 * 3 – 8 = 10 > 0.

So, f(2).f(3) = -6 * 10 = -60 < 0.

So, the root lies between 2 and 3.

Or, $\frac{{2 + 3}}{2}$ = 2.5

Or, f(2.5) = (2.5)3 – 3 * 2.5 – 8 = 0.125.

The root lies between 2 and 2.5.

Or, $\frac{{2 + 2.5}}{2}$ = 2.25.

Or, f(2.25) = (2.25)3 – 3 * 2.25 – 8 = -3.3594 < 0

The root lies between 2.25 and 2.5.

Or, $\frac{{2.25 + 2.5}}{2}$ = 2.375.

Or, f(2.375) = (2.375)3 – 3 * 2.375 – 8 = -1.7285 < 0

So, the root lies between 2.375 and 2.5.

Or, $\frac{{2.375 + 2.5}}{2}$ = 2.4375.

Or, f(2.4375) = (2.4375)3 – 3 * 2.4375 – 8 = -0.83002 < 0.

So, the root lies between 2.4375 and 2.5.

Or, $\frac{{2.4375 + 2.5}}{2}$ = 2.46875

or, f(2.46875) = (2.46875)3 – 3 * 2.46875 – 8 = -0.35989 < 0.

So, the root lies between 2.484375 and 2.5.

Or, $\frac{{2.46875 + 2.5}}{2}$ = 2.484375

Or, f(2.484375) = (2.484375)3 – 3 * 2.484375 – 8 = -0.1192 < 0.

So, the root lies between 2.484375 and 2.5.

Or, $\frac{{2.484375 + 2.5}}{2}$ = 2.4921875.

= 0.0024.

So, the required root = 2.4922.

Getting Info...

About the Author

A free online educational resource provider.

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.