Hey Grade 12 Students, your exams are near so work hard.

Limits and Continuity Exercise 16.1 | Basic Mathematics Solution [NEB UPDATED]

Exercise 16.1

1) Find the following limit:

a) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\ \to\end{array}$2 (2x2 + 3x – 14)

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\ \to\end{array}$2 (2x2 + 3x – 14) = 2 * (2)2 + 3 * 2 – 14 = 0

b) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\ \to\end{array}$5 (x2 + 2x – 9)

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\ \to\end{array}$5 (x2 + 2x – 9) = (5)2 + 2 * 5 – 9= 26

c) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\ \to\end{array}$1 $\frac{{3{{\rm{x}}^2} + 2{\rm{x}} - 4}}{{{{\rm{x}}^2} + 5{\rm{x}} - 4}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\ \to\end{array}$1 $\frac{{3{{\rm{x}}^2} + 2{\rm{x}} - 4}}{{{{\rm{x}}^2} + 5{\rm{x}} - 4}}$ = $\frac{{3{\rm{*}}{{\left( 1 \right)}^2} + 2{\rm{*}}1 - 4}}{{{{\left( 1 \right)}^2} + 5{\rm{*}}1 - 4}}$ = $\frac{1}{2}$.

d) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\ \to\end{array}$3 $\frac{{6{{\rm{x}}^2} + 3{\rm{x}} - 12}}{{2{{\rm{x}}^2} + {\rm{x}} + 1}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\ \to\end{array}$3 $\frac{{6{{\rm{x}}^2} + 3{\rm{x}} - 12}}{{2{{\rm{x}}^2} + {\rm{x}} + 1}}$ = $\frac{{6{\rm{*}}{{\left( 3 \right)}^2} + 3{\rm{*}}3 - 12}}{{2{\rm{*}}{{\left( 3 \right)}^2} + 3 +1}}$ = $\frac{{51}}{{22}}$

 

2) Compute the following limit:

a) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{4{{\rm{x}}^3} - {{\rm{x}}^2} + 2{\rm{x}}}}{{3{{\rm{x}}^2} + 4{\rm{x}}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{4{{\rm{x}}^3} - {{\rm{x}}^2} + 2{\rm{x}}}}{{3{{\rm{x}}^2} + 4{\rm{x}}}}$

When x = 0, the given function takes the form $\frac{0}{0}$.

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{4{{\rm{x}}^3} - {{\rm{x}}^2} + 2{\rm{x}}}}{{3{{\rm{x}}^2} + 4{\rm{x}}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$0 $\frac{{{\rm{x}}\left( {4{{\rm{x}}^2} - {\rm{x}} + 2} \right)}}{{{\rm{x}}\left( {3{\rm{x}} + 4} \right)}}$ = $\frac{{4.0 - 0 + 2}}{{3.0 + 4}} = \frac{1}{2}$

b) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$4 $\frac{{{{\rm{x}}^3} - 64}}{{{{\rm{x}}^2} - 16}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$4 $\frac{{{{\rm{x}}^3} - 64}}{{{{\rm{x}}^2} - 16}}$

When x = 4, the given function takes the form $\frac{0}{0}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$4 $\frac{{{{\rm{x}}^3} - 64}}{{{{\rm{x}}^2} - 16}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$4 $\frac{{{{\left( {\rm{x}} \right)}^3} - {{\left( 4 \right)}^3}}}{{({{\rm{x}}^{)2}} - {{\left( 4 \right)}^2}}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$4$\frac{{\left( {{\rm{x}} - 4} \right)\left( {{{\rm{x}}^2} + 4{\rm{x}} + 16} \right)}}{{{\rm{x}} + 4}}$

= $\frac{{{{\left( 4 \right)}^2} + 4{\rm{*}}4 + 16}}{{4 + 4}}$ = 6

c) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{{{\rm{x}}^{\frac{2}{3}}} - {{\rm{a}}^{\frac{2}{3}}}}}{{{\rm{x}} - {\rm{a}}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{{{\rm{x}}^{\frac{2}{3}}} - {{\rm{a}}^{\frac{2}{3}}}}}{{{\rm{x}} - {\rm{a}}}}$

When x = a, the given function takes the form $\frac{0}{0}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a$\frac{{{{\rm{x}}^{\frac{2}{3}}} - {{\rm{a}}^{\frac{2}{3}}}}}{{{\rm{x}} - {\rm{a}}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a$\frac{{{{\left( {{{\rm{x}}^{\frac{1}{3}}}} \right)}^2} - {{\left( {{{\rm{a}}^{\frac{1}{3}}}} \right)}^2}}}{{{{\left( {{{\rm{x}}^{\frac{1}{3}}}} \right)}^3} - {{\left( {{{\rm{a}}^{\frac{1}{3}}}} \right)}^3}}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\left( {{{\rm{x}}^{\frac{1}{3}}} - {{\rm{a}}^{\frac{1}{3}}}} \right)\left( {{{\rm{x}}^{\frac{1}{3}}} + {{\rm{a}}^{\frac{1}{3}}}} \right)}}{{\left( {{{\rm{x}}^{\frac{1}{3}}} - {{\rm{a}}^{\frac{1}{3}}}} \right)\left( {{{\rm{x}}^{\frac{2}{3}}} + {{\rm{x}}^{\frac{1}{3}}}.{{\rm{a}}^{\frac{1}{3}}} + {{\rm{a}}^{\frac{2}{3}}}} \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a$\frac{{{{\rm{x}}^{\frac{1}{3}}} + {{\rm{a}}^{\frac{1}{3}}}}}{{{{\rm{x}}^{\frac{2}{3}}} + {{\rm{x}}^{\frac{1}{3}}}.{{\rm{a}}^{\frac{1}{3}}} + {{\rm{a}}^{\frac{2}{3}}}}}$

= $\frac{{{{\rm{a}}^{\frac{1}{3}}} + {{\rm{a}}^{\frac{1}{3}}}}}{{{{\rm{a}}^{\frac{2}{3}}} + {{\rm{a}}^{\frac{2}{3}}} + {{\rm{a}}^{\frac{2}{3}}}}}$

= $\frac{{2{{\rm{a}}^{\frac{1}{3}}}}}{{3{{\rm{a}}^{\frac{2}{3}}}}}$

= $\frac{2}{{3{{\rm{a}}^{\frac{1}{3}}}}}$

d) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{{{\rm{x}}^2} + 3{\rm{x}} - 4}}{{{\rm{x}} - 1}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{{{\rm{x}}^2} + 3{\rm{x}} - 4}}{{{\rm{x}} - 1}}$

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{{{\rm{x}}^2} + 3{\rm{x}} - 4}}{{{\rm{x}} - 1}}$

When x = 1, the given function takes the form $\frac{0}{0}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{{{\rm{x}}^2} + 3{\rm{x}} - 4}}{{{\rm{x}} - 1}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{\left( {{\rm{x}} + 4} \right)\left( {{\rm{x}} - 1} \right)}}{{{\rm{x}} - 1}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 (x + 4) = 1 + 4 = 5

e) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{{\rm{x}}^2} - 5{\rm{x}} + 6}}{{{{\rm{x}}^2} - {\rm{x}} - 2}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{{\rm{x}}^2} - 5{\rm{x}} + 6}}{{{{\rm{x}}^2} - {\rm{x}} - 2}}$

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{{\rm{x}}^2} - 5{\rm{x}} + 6}}{{{{\rm{x}}^2} - {\rm{x}} - 2}}$

When x = 2, the given function takes the form $\frac{0}{0}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{\left( {{\rm{x}} - 3)({\rm{x}} - 2} \right)}}{{\left( {{\rm{x}} + 1} \right)\left( {{\rm{x}} - 2} \right)}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{\rm{x}} - 3}}{{{\rm{x}} + 1}}$ = $\frac{{2 - 3}}{{2 + 1}}$ = $ - \frac{1}{3}$

f) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{{\rm{x}}^2} - 4{\rm{x}} + 4}}{{{{\rm{x}}^2} - 7{\rm{x}} + 10}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{{\rm{x}}^2} - 4{\rm{x}} + 4}}{{{{\rm{x}}^2} - 7{\rm{x}} + 10}}$

When x = 2, the given function takes the form $\frac{0}{0}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2$\frac{{{{\rm{x}}^2} - 4{\rm{x}} + 4}}{{{{\rm{x}}^2} - 7{\rm{x}} + 10}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{{\left( {{\rm{x}} - 2} \right)}^2}}}{{2\left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 5} \right)}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{\rm{x}} - 2}}{{{\rm{x}} - 5}}$ = $\frac{{2 - 2}}{{2 - 5}}$ = 0

g) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sqrt {3{\rm{x}}}  - \sqrt {2{\rm{x}} + {\rm{a}}} }}{{2\left( {{\rm{x}} - {\rm{a}}} \right)}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sqrt {3{\rm{x}}}  - \sqrt {2{\rm{x}} + {\rm{a}}} }}{{2\left( {{\rm{x}} - {\rm{a}}} \right)}}$

When x = a, the given function takes the form $\frac{0}{0}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sqrt {3{\rm{x}}}  - \sqrt {2{\rm{x}} + {\rm{a}}} }}{{2\left( {{\rm{x}} - {\rm{a}}} \right)}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sqrt {3{\rm{x}}}  - \sqrt {2{\rm{x}} + {\rm{a}}} }}{{2\left( {{\rm{x}} - {\rm{a}}} \right)}}$ * $\frac{{\sqrt {3{\rm{x}}}  + \sqrt {2{\rm{x}} + {\rm{a}}} }}{{\sqrt {3{\rm{x}}}  + \sqrt {2{\rm{x}} + {\rm{a}}} }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{3{\rm{x}} - 2{\rm{x}} - {\rm{a}}}}{{2\left( {{\rm{x}} - {\rm{a}}} \right)\left( {\sqrt {3{\rm{x}}}  + \sqrt {2{\rm{x}} + {\rm{a}}} } \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{{\rm{x}} - {\rm{a}}}}{{2\left( {{\rm{x}} - {\rm{a}}} \right)\left( {\sqrt {3{\rm{x}}}  + \sqrt {2{\rm{x}} + {\rm{a}}} } \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{1}{{2\left( {\sqrt {3{\rm{x}}}  + \sqrt {2{\rm{x}} + {\rm{a}}} } \right)}}$ = $\frac{1}{{2\left( {\sqrt {3{\rm{a}}}  + \sqrt {3{\rm{a}}} } \right)}}$ = $\frac{1}{{4\sqrt 3 {\rm{a}}}}$ 

h) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sqrt {2{\rm{x}}}  - \sqrt {3{\rm{x}} - {\rm{a}}} }}{{\sqrt {\rm{x}}  - \sqrt {\rm{a}} }}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sqrt {2{\rm{x}}}  - \sqrt {3{\rm{x}} - {\rm{a}}} }}{{\sqrt {\rm{x}}  - \sqrt {\rm{a}} }}$

When x = a, the given function takes the form $\frac{0}{0}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sqrt {2{\rm{x}}}  + \sqrt {3{\rm{x}} - {\rm{a}}} }}{{\sqrt {\rm{x}}  - \sqrt {\rm{a}} }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sqrt {2{\rm{x}}}  - \sqrt {3{\rm{x}} - {\rm{a}}} }}{{\sqrt {\rm{x}}  - \sqrt {\rm{a}} }}$ * $\frac{{\sqrt {2{\rm{x}}}  + \sqrt {3{\rm{x}} + {\rm{a}}} }}{{\sqrt {2{\rm{x}}}  + \sqrt {3{\rm{x}} - {\rm{a}}} }}$ * $\frac{{\sqrt {\rm{x}}  + \sqrt {\rm{a}} }}{{\sqrt {\rm{x}}  + \sqrt {\rm{a}} }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{{{\left( {\rm{x}} \right)}^2} - {{\left( {\sqrt {3{\rm{x}} - {\rm{a}}} } \right)}^2}}}{{{{\left( {\sqrt {\rm{x}} } \right)}^2} - \left( {{{\sqrt {\rm{a}} }^2}} \right)}}$. $\frac{{\sqrt {\rm{x}}  + \sqrt {\rm{a}} }}{{\sqrt {2{\rm{x}}}  + \sqrt {3{\rm{x}} - {\rm{a}}} }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\left( {2{\rm{x}} - 3{\rm{x}} + {\rm{a}}} \right)\left( {\sqrt {\rm{x}}  + \sqrt {\rm{a}} } \right)}}{{\left( {{\rm{x}} - {\rm{a}}} \right)\left( {\sqrt {2{\rm{x}}}  + \sqrt {3{\rm{x}}}  - {\rm{a}}} \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{ - \left( {{\rm{x}} - {\rm{a}}} \right)\left( {\sqrt {\rm{x}}  + \sqrt {\rm{a}} } \right)}}{{\left( {{\rm{x}} - {\rm{a}}} \right)\left( {\sqrt {2{\rm{x}}}  + \sqrt {3{\rm{x}}}  - {\rm{a}}} \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{ - \left( {\sqrt {\rm{x}}  + \sqrt {\rm{a}} } \right)}}{{\sqrt {2{\rm{x}}}  + \sqrt {3{\rm{x}}}  - {\rm{a}}}}$ = $\frac{{\sqrt {\rm{a}}  + \sqrt {\rm{a}} }}{{\sqrt {2{\rm{a}}}  + \sqrt {2{\rm{a}}} }}$ = $ - \frac{1}{{\sqrt 2 }}$ 

i) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{\sqrt {2{\rm{x}}}  - \sqrt {3 - {{\rm{x}}^2}} }}{{{\rm{x}} - 1}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{\sqrt {2{\rm{x}}}  - \sqrt {3 - {{\rm{x}}^2}} }}{{{\rm{x}} - 1}}$

When x = 1, the given function takes the form $\frac{0}{0}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{\sqrt {2{\rm{x}}}  - \sqrt {3 - {{\rm{x}}^2}} }}{{{\rm{x}} - 1}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{\sqrt {2{\rm{x}}}  - \sqrt {3 - {{\rm{x}}^2}} }}{{{\rm{x}} - 1}}$ * $\frac{{\sqrt {2{\rm{x}}}  + \sqrt {3 - {{\rm{x}}^2}} }}{{\sqrt {2{\rm{x}}}  + \sqrt {3 - {{\rm{x}}^2}} }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{2{\rm{x}} - 3 + {{\rm{x}}^2}}}{{\left( {{\rm{x}} - 1} \right)\left( {\sqrt {2{\rm{x}}}  + \sqrt {3 - {{\rm{x}}^2}} } \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{{{\rm{x}}^2} + 2{\rm{x}} - 3}}{{\left( {{\rm{x}} - 1} \right)\left( {\sqrt {2{\rm{x}}}  + \sqrt {3 - {{\rm{x}}^2}} } \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{\left( {{\rm{x}} + 3} \right)\left( {{\rm{x}} - 1} \right)}}{{\left( {{\rm{x}} - 1} \right)\left( {\sqrt {2{\rm{x}}}  + \sqrt {3 - {{\rm{x}}^2}} } \right)}}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{{\rm{x}} + 3}}{{\sqrt {2{\rm{x}}}  + \sqrt {3 - {{\rm{x}}^2}} }}$ = $\frac{{1 + 3}}{{\sqrt 2  + \sqrt 2 }}$ = $\frac{4}{{2\sqrt 2 }}$ = $\sqrt 2 $

j) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{\sqrt {\rm{x}}  - \sqrt {6 - {{\rm{x}}^2}} }}{{{\rm{x}} - 2}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{\sqrt {\rm{x}}  - \sqrt {6 - {{\rm{x}}^2}} }}{{{\rm{x}} - 2}}$

When x = 2, the given function takes the form $\frac{0}{0}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{\sqrt {\rm{x}}  - \sqrt {6 - {{\rm{x}}^2}} }}{{{\rm{x}} - 2}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{\sqrt {\rm{x}}  - \sqrt {6 - {{\rm{x}}^2}} }}{{{\rm{x}} - 2}}$ * $\frac{{\sqrt {\rm{x}}  + \sqrt {6 - {{\rm{x}}^2}} }}{{\sqrt {\rm{x}}  + {\rm{\: }}\sqrt {6 - {{\rm{x}}^2}} }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{\rm{x}} - 6 + {{\rm{x}}^2}}}{{\left( {{\rm{x}} - 2} \right)\left( {\sqrt {\rm{x}}  + \sqrt {6 - {{\rm{x}}^2}} } \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{\left( {{\rm{x}} + 3} \right)\left( {{\rm{x}} - 2} \right)}}{{\left( {{\rm{x}} - 2} \right)\left( {\sqrt {\rm{x}}  + \sqrt {6 - {{\rm{x}}^2}} } \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{\rm{x}} + 3}}{{\sqrt {\rm{x}}  + \sqrt {6 - {{\rm{x}}^2}} }}$ = $\frac{5}{{\sqrt 2  + \sqrt 2 }}$ = $\frac{5}{{2\sqrt 2 }}$

k) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$64 $\frac{{\sqrt[6]{{\rm{x}}} - 2}}{{\sqrt[3]{{\rm{x}}} - 4}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$64 $\frac{{\sqrt[6]{{\rm{x}}} - 2}}{{\sqrt[3]{{\rm{x}}} - 4}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$64 $\frac{{{{\rm{x}}^{\frac{1}{6}}} - 2}}{{{{\rm{x}}^{\frac{1}{3}}} - 4}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$64 $\frac{{{{\rm{x}}^{\frac{1}{2}}} - 2}}{{{{\left( {{{\rm{x}}^{\frac{1}{6}}}} \right)}^2} - {{\left( 2 \right)}^2}}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$64 $\frac{{{{\rm{x}}^{\frac{1}{6}}} - 2}}{{\left( {{{\rm{x}}^{\frac{1}{6}}} + 2} \right)\left( {{{\rm{x}}^{\frac{1}{6}}} - 2} \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$64 $\frac{1}{{{{\rm{x}}^{\frac{1}{6}}} + 2}}$ = $\frac{1}{{{{\left( {64} \right)}^{\frac{1}{6}}} + 2}}$ = $\frac{1}{{2 + 2}}$ = $\frac{1}{4}$

l) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sqrt {3{\rm{a}} - {\rm{x}}}  - \sqrt {{\rm{x}} + {\rm{a}}} }}{{4\left( {{\rm{x}} - {\rm{a}}} \right)}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sqrt {3{\rm{a}} - {\rm{x}}}  - \sqrt {{\rm{x}} + {\rm{a}}} }}{{4\left( {{\rm{x}} - {\rm{a}}} \right)}}$

When x = a, the given function takes the form $\frac{0}{0}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sqrt {3{\rm{a}} - {\rm{x}}}  - \sqrt {{\rm{x}} + {\rm{a}}} }}{{4\left( {{\rm{x}} - {\rm{a}}} \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{\sqrt {3{\rm{a}} - {\rm{x}}}  - \sqrt {{\rm{x}} + {\rm{a}}} }}{{4\left( {{\rm{x}} - {\rm{a}}} \right)}}$ * $\frac{{\sqrt {3{\rm{a}} - {\rm{x}}}  + \sqrt {{\rm{x}} + {\rm{a}}} }}{{\sqrt {3{\rm{a}} - {\rm{x}}}  + \sqrt {{\rm{x}} + {\rm{a}}} }}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{3{\rm{a}} - {\rm{x}} - {\rm{x}} - {\rm{a}}}}{{4\left( {{\rm{x}} - {\rm{a}}} \right)\left( {\sqrt {3{\rm{a}} - {\rm{x}}} } \right) + \sqrt {{\rm{x}} + {\rm{a}})} }}{\rm{\: \: }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $\frac{{2{\rm{x}} - 2{\rm{x}}}}{{4\left( {{\rm{x}} - {\rm{a}}} \right)\left( {\sqrt {3{\rm{a}} - {\rm{x}}}  + \sqrt {{\rm{x}} + {\rm{a}}} } \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a$\frac{{ - 2\left( {{\rm{x}} - {\rm{a}}} \right)}}{{4\left( {{\rm{x}} - {\rm{a}}} \right)\left( {\sqrt {3{\rm{a}} - {\rm{x}}}  + \sqrt {{\rm{x}} + {\rm{a}}} } \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$a $ - \frac{1}{{2\left( {\sqrt {3{\rm{a}} - {\rm{x}}}  + \sqrt {{\rm{x}} + {\rm{a}}} } \right)}}$ = $\frac{1}{{2\left( {\sqrt {2{\rm{a}}}  + \sqrt {2{\rm{a}}} } \right)}}$ = $ - \frac{1}{{4\sqrt {2{\rm{a}}} }}$

 

3) Compute the following limit:

a) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{2{{\rm{x}}^2}}}{{3{{\rm{x}}^2} + 2}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{2{{\rm{x}}^2}}}{{3{{\rm{x}}^2} + 2}}$

When x = ∞, the given function takes the form $\frac{{\rm{\infty }}}{{\rm{\infty }}}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{2{{\rm{x}}^2}}}{{3{{\rm{x}}^2} + 2}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{2}{{3 + \frac{2}{{{{\rm{x}}^2}}}}}$ (Dividing numerator and denominator by x2)

= $\frac{2}{{3 + 0}}$ = $\frac{2}{3}$ 

b) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{3{{\rm{x}}^2} - 4}}{{4{{\rm{x}}^2}}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{3{{\rm{x}}^2} - 4}}{{4{{\rm{x}}^2}}}$

When x = ∞, the given function takes the form $\frac{{\rm{\infty }}}{{\rm{\infty }}}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{3{{\rm{x}}^2} - 4}}{{4{{\rm{x}}^2}}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\frac{3}{4} - \frac{1}{{{{\rm{x}}^2}}}} \right)$.

= $\frac{3}{4} - 0$ = $\frac{3}{4}$

c) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{4{{\rm{x}}^2} + 3{\rm{x}} + 2}}{{5{{\rm{x}}^2} + 4{\rm{x}} - 3}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{4{{\rm{x}}^2} + 3{\rm{x}} + 2}}{{5{{\rm{x}}^2} + 4{\rm{x}} - 3}}$

When x = ∞, the given function takes the form $\frac{{\rm{\infty }}}{{\rm{\infty }}}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{4{{\rm{x}}^2} + 3{\rm{x}} + 2}}{{5{{\rm{x}}^2} + 4{\rm{x}} - 3}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{4 + \frac{3}{{\rm{x}}} + \frac{2}{{{{\rm{x}}^2}}}}}{{5 + \frac{4}{{\rm{x}}} - \frac{3}{{{{\rm{x}}^2}}}}}$ (Dividing numerator and denominator by x2).

= $\frac{{4 + 0 + 0}}{{5 + 0 - 0}}$ = $\frac{4}{5}$

d) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{5{{\rm{x}}^2} + 2{\rm{x}} - 7}}{{3{{\rm{x}}^2} + 5{\rm{x}} + 2}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{5{{\rm{x}}^2} + 2{\rm{x}} - 7}}{{3{{\rm{x}}^2} + 5{\rm{x}} + 2}}$

When x = ∞, the given function takes the form $\frac{{\rm{\infty }}}{{\rm{\infty }}}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{5{{\rm{x}}^2} + 2{\rm{x}} - 7}}{{3{{\rm{x}}^2} + 5{\rm{x}} + 2}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{4 + \frac{3}{{\rm{x}}} + \frac{2}{{{{\rm{x}}^2}}}}}{{5 + \frac{4}{{\rm{x}}} - \frac{3}{{{{\rm{x}}^2}}}}}$ (Dividing numerator and denominator by x2).

= $\frac{{5 + 0 - 0}}{{3 + 0 + 0}}$ = $\frac{5}{3}$

 

4) Calculate the following limits:

a) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {\rm{x}}  - \sqrt {{\rm{x}} - 3} } \right)$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {\rm{x}}  - \sqrt {{\rm{x}} - 3} } \right)$

When x = ∞, the given function takes the form ∞ - ∞.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {\rm{x}}  - \sqrt {{\rm{x}} - 3} } \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {\rm{x}}  - \sqrt {{\rm{x}} - 3} } \right)$ * $\frac{{\sqrt {\rm{x}}  + \sqrt {{\rm{x}} - 3} }}{{\sqrt {\rm{x}}  + \sqrt {{\rm{x}} - 3} }}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{{\rm{x}} - {\rm{x}} + 3}}{{\sqrt {\rm{x}}  + \sqrt {{\rm{x}} - 3} }}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{3}{{\sqrt {\rm{x}}  + \sqrt {{\rm{x}} - 3} }}$ = $\frac{3}{{{\rm{\infty }} + {\rm{\infty }}}}$ = 0

b) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {{\rm{x}} - {\rm{a}}}  - \sqrt {{\rm{x}} - {\rm{b}}} } \right)$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {{\rm{x}} - {\rm{a}}}  - \sqrt {{\rm{x}} - {\rm{b}}} } \right)$

When x = ∞, the given function takes the form ∞ - ∞.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {{\rm{x}} - {\rm{a}}}  - \sqrt {{\rm{x}} - {\rm{b}}} } \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {\rm{x}}  - \sqrt {{\rm{x}} - 3} } \right)$ * $\frac{{\sqrt {{\rm{x}} - {\rm{a}}}  + \sqrt {{\rm{x}} - {\rm{b}}} }}{{\sqrt {{\rm{x}} - {\rm{a}}}  + \sqrt {{\rm{x}} - {\rm{b}}} }}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{{\rm{x}} - {\rm{a}} - {\rm{x}} + {\rm{b}}}}{{\sqrt {{\rm{x}} - {\rm{a}}}  + \sqrt {{\rm{x}} - {\rm{b}}} }}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{{\rm{b}} - {\rm{a}}}}{{\sqrt {{\rm{x}} - {\rm{a}}}  + \sqrt {{\rm{x}} - {\rm{b}}} }}$ = $\frac{{{\rm{b}} - {\rm{a}}}}{{\sqrt {{\rm{x}} - {\rm{a}}}  + \sqrt {{\rm{x}} - {\rm{b}}} }}$ = $\frac{{{\rm{b}} - {\rm{a}}}}{{{\rm{\infty }} + {\rm{\infty }}}}$ = 0

c) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {3{\rm{x}}}  - \sqrt {{\rm{x}} - 5} } \right)$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {3{\rm{x}}}  - \sqrt {{\rm{x}} - 5} } \right)$

When x = ∞, the given function takes the form ∞ - ∞.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {3{\rm{x}}}  - \sqrt {{\rm{x}} - 5} } \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {3{\rm{x}}}  - \sqrt {{\rm{x}} - 5} } \right)$ * $\frac{{\sqrt {3{\rm{x}}}  + \sqrt {{\rm{x}} - 5} }}{{\sqrt {3{\rm{x}}}  + \sqrt {{\rm{x}} - 5} }}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{3{\rm{x}} - {\rm{x}} + 5}}{{\sqrt {3{\rm{x}}}  + \sqrt {{\rm{x}} - 5} }}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{2{\rm{x}} + 5}}{{\sqrt {3{\rm{x}}}  + \sqrt {{\rm{x}} - 5} }}$  (Dividing numerator and denominator by x).

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞  = $\frac{{2 + \frac{5}{{\rm{x}}}}}{{\sqrt {\frac{3}{{\rm{x}}}}  + \sqrt {\frac{1}{{\rm{x}}} - \frac{5}{{{{\rm{x}}^2}}}{\rm{\: }}} }}$ = $\frac{{2 + 0}}{{0 + 0}}$ = ∞ 

d) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\sqrt {\rm{x}} \left( {\sqrt {\rm{x}}  - \sqrt {{\rm{x}} - {\rm{a}}} } \right)$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\sqrt {\rm{x}} \left( {\sqrt {\rm{x}}  - \sqrt {{\rm{x}} - {\rm{a}}} } \right)$

When x = ∞, the given function takes the form ∞ - ∞.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\sqrt {\rm{x}} \left( {\sqrt {\rm{x}}  - \sqrt {{\rm{x}} - {\rm{a}}} } \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {\rm{x}}  - \sqrt {{\rm{x}} - {\rm{a}}} } \right)$ * $\frac{{\sqrt {\rm{x}}  + \sqrt {{\rm{x}} - {\rm{a}}} }}{{\sqrt {\rm{x}}  + \sqrt {{\rm{x}} - {\rm{a}}} }}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{\sqrt {\rm{x}} \left( {{\rm{x}} - {\rm{x}} + {\rm{a}}} \right)}}{{\sqrt {\rm{x}}  + \sqrt {{\rm{x}} - {\rm{a}}} }}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{{\rm{a}}\sqrt {\rm{x}} }}{{\sqrt {\rm{x}}  + \sqrt {{\rm{x}} - {\rm{a}}} }}$  (Dividing numerator and denominator by $\sqrt {\rm{x}} $).

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞  = $\frac{{\rm{a}}}{{1 + \sqrt {1 - \frac{{\rm{a}}}{{\rm{x}}}{\rm{\: }}} }}$ = $\frac{{\rm{a}}}{{1 + 1}}$ = $\frac{{\rm{a}}}{2}$.

e) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {{\rm{x}} - {\rm{a}}}  - \sqrt {{\rm{bx}}} } \right)$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {{\rm{x}} - {\rm{a}}}  - \sqrt {{\rm{bx}}} } \right)$

When x = ∞, the given function takes the form ∞ - ∞.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {{\rm{x}} - {\rm{a}}}  - \sqrt {{\rm{bx}}} } \right)$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\left( {\sqrt {{\rm{x}} - {\rm{a}}}  - \sqrt {{\rm{bx}}} } \right)$ * $\frac{{\sqrt {{\rm{x}} - {\rm{a}}}  + \sqrt {{\rm{bx}}} }}{{\sqrt {{\rm{x}} - {\rm{a}}}  + \sqrt {{\rm{bx}}} }}$.

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{{\rm{x}} - {\rm{a}} - {\rm{bx}}}}{{\sqrt {{\rm{x}} - {\rm{a}}}  + \sqrt {{\rm{bx}}} }}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ $\frac{{\left( {1 - {\rm{b}}} \right){\rm{x}} - {\rm{a}}}}{{\sqrt {{\rm{x}} - {\rm{a}}}  + \sqrt {{\rm{bx}}} }}$  (Dividing numerator and denominator by x).

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞  = $\frac{{\left( {1 - {\rm{b}}} \right) - \frac{{\rm{a}}}{{\rm{x}}}}}{{\sqrt {\frac{1}{{\rm{x}}} - \frac{{\rm{a}}}{{{{\rm{x}}^2}}}{\rm{\: }}}  + \sqrt {\frac{{\rm{b}}}{{\rm{x}}}} }}$ = ∞ if b ≠ 1.

If b = 1, then x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$∞ = $\frac{{\left( {1 - {\rm{b}}} \right){\rm{x}} - {\rm{a}}}}{{\sqrt {{\rm{x}} - {\rm{a\: }}}  + \sqrt {{\rm{bx}}} }}$

= $\frac{{ - {\rm{a}}}}{{{\rm{\infty }} + {\rm{\infty }}}}$ = 0

 

5. a) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{\rm{x}} - \sqrt {8 - {{\rm{x}}^2}} }}{{\sqrt {{{\rm{x}}^2} + 12}  - 4}}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{\rm{x}} - \sqrt {8 - {{\rm{x}}^2}} }}{{\sqrt {{{\rm{x}}^2} + 12}  - 4}}$

When x = 2, the given function takes the form $\frac{0}{0}$

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{\rm{x}} - \sqrt {8 - {{\rm{x}}^2}} }}{{\sqrt {{{\rm{x}}^2} + 12}  - 4}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2 $\frac{{{\rm{x}} - \sqrt {8 - {{\rm{x}}^2}} }}{{\sqrt {{{\rm{x}}^2} + 12}  - 4}}$ * $\frac{{{\rm{x}} + \sqrt {8 - {{\rm{x}}^2}} }}{{{\rm{x}} + \sqrt {8 - {{\rm{x}}^2}} }}$ * $\frac{{\sqrt {{{\rm{x}}^2} + 12{\rm{\: }}}  + 4}}{{\sqrt {{{\rm{x}}^2} + 12}  + 4}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2$\frac{{\left( {{{\rm{x}}^2} - 8 + {{\rm{x}}^2}} \right)\left( {\sqrt {{{\rm{x}}^2} + 12}  + 4} \right)}}{{\left( {{{\rm{x}}^2} + 12 - 16} \right)\left( {{\rm{x}} + \sqrt {8 - {{\rm{x}}^2}} } \right)}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2$\frac{{2\left( {{{\rm{x}}^2} - 4} \right)\left( {\sqrt {{{\rm{x}}^2} + 12}  + 4} \right)}}{{\left( {{{\rm{x}}^2} - 4} \right)\left( {{\rm{x}} + \sqrt {8 - {{\rm{x}}^2}} } \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$2  = $\frac{{2\left( {\sqrt {{{\rm{x}}^2} + 12}  + 4} \right)}}{{\left( {{\rm{x}} + \sqrt {8 - {{\rm{x}}^2}} } \right)}}$= $\frac{{2\left( {\sqrt {4 + 12}  + 4} \right)}}{{2 + \sqrt {8 - 4} }}$ = $\frac{{2{\rm{*}}8}}{4}$ = 4 

b) x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{{\rm{x}} - \sqrt {2 - {{\rm{x}}^2}} }}{{2{\rm{x}} - \sqrt {2 + 2{{\rm{x}}^2}} }}$

Solution:

x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{{\rm{x}} - \sqrt {2 - {{\rm{x}}^2}} }}{{2{\rm{x}} - \sqrt {2 + 2{{\rm{x}}^2}} }}$

When x = 1, the given function takes the form $\frac{0}{0}$.

Or, x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1 $\frac{{{\rm{x}} - \sqrt {2 - {{\rm{x}}^2}} }}{{2{\rm{x}} - \sqrt {2{\rm{x}} + 2{{\rm{x}}^2}} }}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1$\frac{{{\rm{x}} - \sqrt {2 - {{\rm{x}}^2}} }}{{2{\rm{x}} - \sqrt {2{\rm{x}} + 2{{\rm{x}}^2}} }}$ * $\frac{{{\rm{x}} + \sqrt {2 - {{\rm{x}}^2}} }}{{{\rm{x}} + \sqrt {2 - {{\rm{x}}^2}} }}$ * $\frac{{2{\rm{x}} + \sqrt {2 + 2{{\rm{x}}^2}} }}{{2{\rm{x}} + \sqrt {2 + 2{{\rm{x}}^2}} }}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1$\frac{{\left( {{{\rm{x}}^2} - 2 + {{\rm{x}}^2}} \right)\left( {2{\rm{x}} + \sqrt {2 + 2{{\rm{x}}^2}} } \right)}}{{\left( {4{{\rm{x}}^2} - 2 - 2{{\rm{x}}^2}} \right)\left( {{\rm{x}} + \sqrt {2 - {{\rm{x}}^2}} } \right)}}$ = x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1$\frac{{\left( {2{{\rm{x}}^2} - 2} \right)\left( {2{\rm{x}} + \sqrt {2 + 2{{\rm{x}}^2}} } \right)}}{{\left( {2{{\rm{x}}^2} - 2} \right)\left( {{\rm{x}} + \sqrt {2 - {{\rm{x}}^2}} } \right)}}$

= x $\begin{array}{*{20}{c}}{{\rm{lim\: }}}\\\to\end{array}$1  = $\frac{{2{\rm{x}} + \sqrt {2 + 2{{\rm{x}}^2}} }}{{{\rm{x}} + \sqrt {2 - {{\rm{x}}^2}} }}$=$\frac{{2 + 2}}{{1 + 1}}$ = 2

Getting Info...

About the Author

A free online educational resource provider.

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.