Hey Grade 12 Students, your exams are near so work hard.

Measure of Dispersion Exercise: 14.1 Class 11 Basic Mathematics Solution [NEB UPDATED]

Class 11 Basic Mathematics Solution Exercise 14.1

Exercise 14.1

1. a) Find the standard deviation from the following set of observation

20, 25, 30, 36, 32, 43

Solution:

Sum of observation ($\sum x $) = 20+25+30+36+32+43 =186

And, Mean$(\bar x){\rm{ = }}\frac{{\sum x }}{N} = \frac{{186}}{6} = 31$

x

d=x-$\bar x$

d2

20

-11

121

25

-6

36

30

-1

1

36

5

25

32

1

1

43

12

144

$\sum x = 186$ 

 

$\sum {{d^2}} = 328$ 

Thus, Standard Deviation =$\sqrt {\frac{{\sum {{d^2}} }}{N}}$ = $\sqrt {\frac{{328}}{6}} $=3.01

 

b) Daily Expenditure of 6 families are given below:

Rs.240, Rs.180, Rs. 320, Rs.160, Rs.260, Rs.400

Find Standard Deviation.

Solution:

Sum of expenditure ($\sum x $) = 240+180+320+160+260+400 = 1560

 Mean$(\bar x){\rm{ = }}\frac{{\sum x }}{N} = \frac{{1560}}{6} = 260$

x

d=x-$\bar x$

d2

240

-20

400

180

-80

6400

320

60

3600

160

-100

10000

260

0

0

400

140

19600

$\sum x = 1560$ 

 

$\sum {{d^2}} = 40000$ 

Thus, Standard Deviation =$\sqrt {\frac{{\sum {{d^2}} }}{N}}$ = $\sqrt {\frac{{40000}}{6}} $=81.65

2. a) The following table presents the distribution of the bonus for 50 workers.

Bonus

5

10

15

20

25

Frequency

12

20

8

6

4

Find the mean and Standard Deviation.

Solution:

Bonus(x)

Frequency(f)

fx

x - ${\rm{\bar x}}$

(x - ${\rm{\bar x}}$)2

f(x - ${\rm{\bar x}}$)2

5

10

15

20

25

12

20

8

6

4

60

200

120

120

100

-7

-2

3

8

13

49

4

9

64

169

588

80

72

384

676

 

N = 50

$\mathop \sum \nolimits^ {\rm{fx}}$ = 600

 

 

$\mathop \sum \nolimits^ {\rm{f}}{\left( {{\rm{x}} - {\rm{\bar x}}} \right)^2}$=1,800

 

We have, Mean(${\rm{\bar x}}$)= $\frac{{\mathop \sum \nolimits^ {\rm{fx}}}}{{\rm{N}}}$ = $\frac{{600}}{{50}}$ = 12.

Again, S.D.(σ) = $\sqrt {\frac{{\mathop \sum \nolimits^ {\rm{f}}{{\left( {{\rm{x}} - {\rm{\bar x}}} \right)}^2}}}{{\rm{n}}}} $ = $\sqrt {\frac{{1800}}{{50}}} $ = $\sqrt {36} $ = 6.

b) Find the standard deviation from the following data:

X

10

20

30

40

50

f

8

12

15

9

6

Solution: 

Bonus(x)

Frequency(f)

fx

x - ${\rm{\bar x}}$

(x - ${\rm{\bar x}}$)2

f(x - ${\rm{\bar x}}$)2

10

20

30

40

50

8

12

15

9

6

80

240

450

360

300

- 18.6

-8.6

1.4

11.4

21.4

345.96

73.96

1.96

129.96

457.96

2767.68

887.52

29.4

1169.64

2747.76

 

N = $\mathop \sum \nolimits^ {\rm{f}}$ = 50

$\mathop \sum \nolimits^ {\rm{fx}}$ = 1430

 

 

$\mathop \sum \nolimits^ {\rm{f}}{\left( {{\rm{x}} - {\rm{\bar x}}} \right)^2}$=7602.

We have, Mean(${\rm{\bar x}}$)= $\frac{{\mathop \sum \nolimits^ {\rm{fx}}}}{{\rm{N}}}$ = $\frac{{1430}}{{50}}$ = 28.6

Again, S.D.(σ) = $\sqrt {\frac{{\mathop \sum \nolimits^ {\rm{f}}{{\left( {{\rm{x}} - {\rm{\bar x}}} \right)}^2}}}{{\rm{n}}}} $ = $\sqrt {\frac{{7602}}{{50}}} $ = $\sqrt {152.04} $ = 12.23.

C) Find the variance of the following data:

Variable

10

12

15

18

20

Frequency

2

7

10

8

3

Solution:

Let Assume Mean be A=15.

X

f

d=x-A

fd

fd2

10

2

-5

-10

50

12

7

-3

-21

61

15

10

0

0

0

18

8

3

24

72

20

3

5

15

75

 

N=30

 

$\sum {fd}  = 8$

$\sum {f{d^2}}  = 258$

Standard Deviation = $\sigma  = {\rm{ }}\sqrt {\frac{{\sum {f{d^2}} }}{N} - {{\left( {\frac{{\sum {fd} }}{N}} \right)}^2}} $

=$\sigma  {\rm{ }}\sqrt {\frac{{258}}{{30}} - {{\left( {\frac{8}{{30}}} \right)}^2}} $

=$ \sqrt {8.52} $

=2.92

And Variance = ${\sigma ^2} = {2.92^2} = 8.52$

3. a) Find the standard deviation from the following frequency distribution table:

Age

2-4

4-6

6-8

8-10

Frequency

6

6

7

2

Solution:

Age

F

Mid-value(x)

fx

x - ${\rm{\bar x}}$

(x - ${\rm{\bar x}}$)2

f(x - ${\rm{\bar x}}$)2

2 – 4

4 – 6

6 – 8

8 – 10

6

5

7

2

3

5

7

9

18

25

49

18

-2.5

-0.5

1.5

3.5

6.25

0.25

2.25

12.25

37.5

1.25

15.75

24.5

 

N = $\mathop \sum \nolimits^ {\rm{f}}$ = 20

 

$\mathop \sum \nolimits^ {\rm{fx}}$ = 110

 

 

$\mathop \sum \nolimits^ {\rm{f}}{\left( {{\rm{x}} - {\rm{\bar x}}} \right)^2}$= 79.

 

So, Mean $({\rm{\bar x}}$) = $\frac{{\mathop \sum \nolimits^ {\rm{fx}}}}{{\rm{N}}}$ = $\frac{{110}}{{20}}$ = 5.5.

Again, S.D. (σ) = $\sqrt {\frac{{\mathop \sum \nolimits^ {\rm{f}}{{\left( {{\rm{x}} - {\rm{\bar x}}} \right)}^2}}}{{\rm{N}}}} $ = $\sqrt {\frac{{79}}{{20}}} $ = $\sqrt {3.95} $ = 1.99

 

b) Calculate the mean, standard deviation and the coefficient of variation from the following frequency distribution table:

Income

300-400

400-500

500-600

600-700

700-800

No. Of Person

8

12

20

6

4

Solution:

Income

F

x

fx

x - ${\rm{\bar x}}$

(x - ${\rm{\bar x}}$)2

f(x - ${\rm{\bar x}}$)2

300 – 400

400 – 500

500 – 600

600 – 700

700 – 800

8

12

20

6

4

350

450

550

650

750

2800

5400

11000

3900

3000

-172

-72

28

128

228

29584

5184

784

16384

51984

236672

62208

15680

98304

207936

 

N = $\mathop \sum \nolimits^ {\rm{f}}$ = 50

 

$\mathop \sum \nolimits^ {\rm{fx}}$ = 26100

 

 

$\mathop \sum \nolimits^ {\rm{f}}{\left( {{\rm{x}} - {\rm{\bar x}}} \right)^2}$= 620800.

 

So, Mean $({\rm{\bar x}}$) = $\frac{{\mathop \sum \nolimits^ {\rm{fx}}}}{{\rm{N}}}$ = $\frac{{26100}}{{50}}$ = Rs.522.

Again, S.D. (σ) = $\sqrt {\frac{{\mathop \sum \nolimits^ {\rm{f}}{{\left( {{\rm{x}} - {\rm{\bar x}}} \right)}^2}}}{{\rm{N}}}} $ = $\sqrt {\frac{{620800}}{{50}}} $ = $\sqrt {12416} $ = Rs. 111.43

Coefficient of variation (C.V.) = $\frac{\sigma }{{\rm{x}}}$ * 100% = $\frac{{111.43}}{{522}}$ * 100% = 21.35%.

c) Determine the mean, standard deviation and coefficient of variation from the following frequency data:

Profits

0-10

10-20

20-30

30-40

40-50

No. of Shops

8

13

16

8

5

Solution:

Income

f

x

fx

x - ${\rm{\bar x}}$

(x - ${\rm{\bar x}}$)2

f(x - ${\rm{\bar x}}$)2

0 – 10

10 – 20

20 – 30

30 – 40

40 – 50

8

13

16

8

5

5

15

25

35

45

40

195

400

280

225

-17.8

-7.8

2.2

12.2

22.5

316.84

60.84

4.84

148.84

492.84

2534.72

790.92

77.44

1190.72

2464.2

 

N = $\mathop \sum \nolimits^ {\rm{f}}$ = 50

 

$\mathop \sum \nolimits^ {\rm{fx}}$ = 1140

 

 

$\mathop \sum \nolimits^ {\rm{f}}{\left( {{\rm{x}} - {\rm{\bar x}}} \right)^2}$= 7058.

 

So, Mean $({\rm{\bar x}}$) = $\frac{{\mathop \sum \nolimits^ {\rm{fx}}}}{{\rm{N}}}$ = $\frac{{1140}}{{50}}$ = Rs.22.8

Again, S.D. (σ) = $\sqrt {\frac{{\mathop \sum \nolimits^ {\rm{f}}{{\left( {{\rm{x}} - {\rm{\bar x}}} \right)}^2}}}{{\rm{N}}}} $ = $\sqrt {\frac{{7083}}{{50}}} $ = $\sqrt {141.16} $ = Rs. 11.88

Coefficient of variation (C.V.) = $\frac{\sigma }{{\rm{x}}}$ * 100% = $\frac{{11.88}}{{22.8}}$ * 100% = 52.1%.

4. a) The coefficient of variation of two series are 24% and 40% and their respective standard deviaton are 6 and 8, find the respective means.

Solution:

For Ist Series:

C.V =24%

S.D. (σ) = 6

We Know:

$\begin{array}{l}CV = \frac{\sigma }{{\bar x}} \times 100\% \\or,\bar x = \frac{6}{{24}} \times 100\%  = 25\end{array}$

For 2nd Series:

C.V =40%

S.D. (σ) = 8

We Know:

$\begin{array}{l}CV = \frac{\sigma }{{\bar x}} \times 100\% \\or,\bar x = \frac{8}{{40}} \times 100\%  = 20\end{array}$

b) The coefficient of variation of two series is 45% and 30% and their respective means are 16 and 40, find their respective standard deviations.

Solution:

For Ist Series:

C.V =45%

Mean ${(\bar x)}$ =16

We Know:

$\begin{array}{l}CV = \frac{\sigma }{{\bar x}} \times 100\% \\i.e.\;{\rm{45\%   = }}\frac{\sigma }{{16}} \times 100\% \\or,\,\sigma  = \frac{{16 \times 45\% }}{{100}} = 7.2\end{array}$

For 2nd Series:

C.V =30%

Mean ${(\bar x)}$ =40

We Know:

$[\begin{array}{l}CV = \frac{\sigma }{{\bar x}} \times 100\% \\i.e.\;{\rm{30\%   = }}\frac{\sigma }{{40}} \times 100\% \\or,\,\sigma  = \frac{{30 \times 40\% }}{{100}} = 12\end{array}$

5. a) Following are the information about the marks of two students A and B

 

A

B

Average Marks

84

92

Variance of Marks

16

25

Examine who has got the uniform mark.

Solution:

For student A,

Or, ${\rm{\bar x}}$ = 84, σ2 = 16.

So, σ = 4.

So, C.V. = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100% = $\frac{4}{{84}}$ * 100% = 4.76%.

For student B,

Or, ${\rm{\bar x}}$ = 92, σ2 = 25.

So, σ = 5.

So, C.V. = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100% = $\frac{5}{{92}}$ * 100% = 5.43%.

Here, C.V. of the student (A) < C.V. of student (B).

So, A has got the uniform mark.

b) From the following information, examine which of the firm A or B has greater variability of distribution of wage.

 

Firm A

Firm B

No. of Workers:

25

15

Average monthly wage:

Rs. 6400

Rs. 7500

Standard Deviation wage:

4.5

5.4

Also find the combined mean.

Solution:

For firm A,

n = 25, ${\rm{\bar x}}$ = 6400, σ = 4.5

C.V. = = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100% = $\frac{{4.5}}{{6400}}$ * 100% = 0.070%.

For firm B,

n = 15, ${\rm{\bar x}}$ = 7500, σ = 54

C.V. = = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100% = $\frac{{5.4}}{{7500}}$ * 100% = 0.072%.

Here, C.v. of firm B Is grater than C.V. of form A.

So, the distribution of wages in firm B has greater variability than firm A.

Now, combined mean $\left( {{{{\rm{\bar x}}}_{12}}} \right)$ = $\frac{{{{\rm{n}}_1}.{{{\rm{\bar x}}}_1} + {{\rm{n}}_2}{{{\rm{\bar x}}}_2}}}{{{{\rm{n}}_1} + {{\rm{n}}_2}}}$ = $\frac{{25{\rm{*}}6400 + 15{\rm{*}}7500}}{{25 + 15}}$ = $\frac{{272500}}{{40}}$ = 6812.5

c) The average weekly wage in a factory has increased from Rs.4200  to Rs.4800  and the standard deviation has increased from Rs.5  to Rs.8 . Can you conclude that the wage has increased uniformly?

Solution:

Weekly wage amount = 4800-4200 = Rs. 600

Standard Deviation = 8-5= Rs. 3

Increased Uniformly by $\frac{{600}}{3} = 200$

d)  Examine which variable X, the length (in cm) or Y, the weight (in kg) show the greater variability from the following data:

$\sum x  = 280;\;{\sum x ^2} = 835;\;\sum Y  = 565;\;{\sum Y ^2} = 3640;\,{\rm{n = 10}}$

Solution:

 

6. a) Following are the marks obtained by the students X and Y in 6 tests of 100 marks each:

Test

1

2

3

4

5

6

X

56

72

48

69

64

81

Y

63

74

45

57

82

63

If the consistency of the performance is the criteria for awarding a price who should get the price?

Solution:

Arranging the marks of X and Y in ascending order.

x(X)

d = x – 64

d2

x(Y)

d = y – 63

y + d2

48

56

64

69

72

81

-16

-8

0

5

8

17

256

64

0

25

64

289

45

57

63

63

74

82

-18

-6

0

0

11

19

324

36

0

0

121

361

 

$\mathop \sum \nolimits^ {\rm{d}}$ = 6

$\mathop \sum \nolimits^ {{\rm{d}}^2}$ = 689

 

$\mathop \sum \nolimits^ {\rm{d}}$ = 6

$\mathop \sum \nolimits^ {{\rm{d}}^2}$ = 842.

 

For student X,

Or, ${\rm{\bar x}}$ = a + $\frac{{\mathop \sum \nolimits^ {\rm{d}}}}{{\rm{n}}}$ = 64 + $\frac{6}{6}$ = 65.

S.D.(σ) = $\sqrt {\frac{{\mathop \sum \nolimits^ {{\rm{d}}^2}}}{{\rm{n}}} - {{\left( {\frac{{\mathop \sum \nolimits^ {\rm{d}}}}{{\rm{n}}}} \right)}^2}} $ = $\sqrt {\frac{{689}}{6} - {{\left( {\frac{6}{6}} \right)}^2}} $

= $\sqrt {116.33 - 1} $ = $\sqrt {115.33} $ = 10.74

For student Y,

Or, ${\rm{\bar x}}$ = a + $\frac{{\mathop \sum \nolimits^ {\rm{d}}}}{{\rm{n}}}$ = 63 + $\frac{6}{6}$ = 64.

S.D.(σ) = $\sqrt {\frac{{\mathop \sum \nolimits^ {{\rm{d}}^2}}}{{\rm{n}}} - {{\left( {\frac{{\mathop \sum \nolimits^ {\rm{d}}}}{{\rm{n}}}} \right)}^2}} $ = $\sqrt {\frac{{842}}{6} - {{\left( {\frac{6}{6}} \right)}^2}} $

= $\sqrt {139.33} $ = 11.8.

So, C.V. (X) = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100 % = $\frac{{10.74}}{{65}}$ * 100% = 16.52%.

So, C.V. (Y) = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100 % = $\frac{{11.80}}{{64}}$ * 100 % = 18.42%.

Here, C.V.(X) < C.V.(Y).

So, X should get the prize.

b) The goals scored by two teams X and Y in the football season were as follows:

No of Goals Scored in Match

No. Of Matches

X

Y

0

27

17

1

9

9

2

8

6

3

5

5

4

4

3

Find out which team is constituent.

Solution:

 

c) Ananda obtained samples of CFL bulbs from two suppliers. He got the samples tested in his laboratory for the lengths of the life. The results of the test are given below which supplier's bulb shows greater variability in the length of the life?

Length of Life

No. of Bulbs

Supplier A

Supplier B

400-500

8

6

500-600

20

24

600-700

16

12

700-800

6

8

Which supplier’s bulb shows greater variability in the length of the life.

Solution:

Length of life

x

d = x – a

d2

For A(f)

fd

fd2

For B(f)

fd

fd2

400 – 500

500 – 600

600 – 700

700 – 800

450

 

550

 

650

 

750

-100

 

0

 

100

 

200

10000

 

0

 

10000

 

40000

 

8

 

20

 

16

 

6

-800

 

0

 

1600

 

1200

80000

 

0

 

160000

 

240000

6

 

24

 

12

 

8

-600

 

0

 

1200

 

1600

60000

 

0

 

120000

320000

 

 

 

 

N = $\mathop \sum \nolimits^ {\rm{f}}$ = 50

$\mathop \sum \nolimits^ {\rm{fd}}$ =20000

$\mathop \sum \nolimits^ {\rm{f}}{{\rm{d}}^2}$ =400000

N = $\mathop \sum \nolimits^ {\rm{f}}$ = 50

$\mathop \sum \nolimits^ {\rm{fd}}$ =2200

$\mathop \sum \nolimits^ {\rm{f}}{{\rm{d}}^2}$ =500000

Now,

For supplier A,

Or, ${\rm{\bar x}}$ = a + $\frac{{\mathop \sum \nolimits^ {\rm{fd}}}}{{\rm{N}}}$ = 550 + $\frac{{2000}}{{50}}$ = 590.

σ(A) = $\sqrt {\frac{{\mathop \sum \nolimits^ {\rm{f}}{{\rm{d}}^2}}}{{\rm{N}}} - {{\left( {\frac{{\mathop \sum \nolimits^ {\rm{fd}}}}{{\rm{N}}}} \right)}^2}} $ = $\sqrt {\frac{{400000}}{{50}} - {{\left( {\frac{{2000}}{{50}}} \right)}^2}} $.

= $\sqrt {8000 - 1600} $ = 80.

So, C.V. (A) = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100% = $\frac{{80}}{{590}}$ * 100% = 15.56%.

For supplier B,

Or, ${\rm{\bar y}}$ = a + $\frac{{\mathop \sum \nolimits^ {\rm{fd}}}}{{\rm{N}}}$ = 550 + $\frac{{2200}}{{50}}$ = 594.

σ(B) = $\sqrt {\frac{{\mathop \sum \nolimits^ {\rm{f}}{{\rm{d}}^2}}}{{\rm{N}}} - {{\left( {\frac{{\mathop \sum \nolimits^ {\rm{fd}}}}{{\rm{N}}}} \right)}^2}} $ = $\sqrt {\frac{{500000}}{{50}} - {{\left( {\frac{{2200}}{{50}}} \right)}^2}} $.

= $\sqrt {10000 - 1936} $ = $\sqrt {8064} $ = 89.8.

So, C.V. (B) = $\frac{\sigma }{{{\rm{\bar x}}}}$ * 100% = $\frac{{89.8}}{{594}}$ * 100% = 15.11%.

Here, C.V. (A) < C.V. (B)

So, supplier B shows greater variability in the lengths of life.

7. a) The average score of 200 students in a class A is 70 with standard deviation 12 and the average score of 300 students of collage B is observed to be 60 with standard deviation 15. What are the combined standard deviation of scores of two colleges combined together?

Solution:

For College A

n1=200

$\begin{array}{l}{{\bar x}_1} = 70\\{\sigma _1} = 12\end{array}$

For College B

n2=300

$\begin{array}{l}{{\bar x}_2} = 6\\{\sigma _2} = 15\end{array}$

$Combined{\rm{  Mean (}}{{\bar x}_{12}}) = \frac{{{n_1}{{\bar x}_1} + {n_2}{{\bar x}_2}}}{{{n_1} + {n_2}}} = \frac{{200 \times 70 + 300 \times 60}}{{200 + 300}} = 64$

$\begin{array}{l}{\sigma _{12}} = \sqrt {\frac{{{n_1}({\sigma _1} + {d_1}^2) + {n_2}({\sigma _2} + {d_2}^2)}}{{{n_1} + {n_2}}}} \\where,\;{d_1} = {{\bar x}_1} - {{\bar x}_{12}} = 70 - 64 = 6\\{d_2} = {{\bar x}_2} - {{\bar x}_{12}} = 60 - 64 =  - 4\\Thus,\\{\sigma _{12}} = \sqrt {\frac{{200({{12}^2} + {6^2}) + 300({{15}^2} + 16)}}{{200 + 300}}}  = 14.72\end{array}$

b) The monthly wage paid to the workers of the firm A and B belonging to same industry have presented below.


Firm A

Firm B

 

No.of workers

50

40

Average monthly wages

Rs 63

Rs. 54

Variance of wages

81

36

Determine the combined mean and combined standard deviation of the combined group of 90 workers.

Solution:

Firm A

Firm B

$\begin{array}{l}{n_2} = 50\\{{\bar x}_2} = 63\\{\sigma _2} = 9\end{array}$

$\begin{array}{l}{n_2} = 40\\{{\bar x}_2} = 54\\{\sigma _2} = 6\end{array}$

$Combined{\rm{ Mean (}}{{\bar x}_{12}}) = \frac{{{n_1}{{\bar x}_1} + {n_2}{{\bar x}_2}}}{{{n_1} + {n_2}}} = \frac{{50 \times 63 + 40 \times 54}}{{50 + 40}} = 59$

$\begin{array}{l}{\sigma _{12}} = \sqrt {\frac{{{n_1}({\sigma _1} + {d_1}^2) + {n_2}({\sigma _2} + {d_2}^2)}}{{{n_1} + {n_2}}}} \\where,\;{d_1} = {{\bar x}_1} - {{\bar x}_{12}} = 63 - 59 = 4\\{d_2} = {{\bar x}_2} - {{\bar x}_{12}} = 54 - 59 =  - 5\\Thus,\\{\sigma _{12}} = \sqrt {\frac{{50({9^2} + {4^2}) + 40({6^2} + {5^2})}}{{50 + 40}}}  = 9\end{array}$

8.a) The arithmetic mean and the standard deviation of a series of 20 items as calculated, by a student were 20 cm and 5 cm respectively. But while calculating an item 13 were misread as 30. Find the correct mean and standard deviation.

Solution:

 Given:

n = 20, ${\bar x}$ = 20, σx = 5

Correct value = 13, wrong value = 30

$\begin{array}{l}\bar x = \frac{{\sum {{x_i}} }}{n}\\i.e.20 = \frac{{\sum {{x_i}} }}{{20}}\\or,\sum {{x_i}}  = 400\end{array}$

Corrected ∑xi = 400 – (wrong value) + (correct value)

= 400 – 30 + 13

= 383

Corrected Mean = $\frac{{Corrected{\rm{ }}\sum {{x_i}} }}{n} = \frac{{383}}{{20}} = 19.15$

$\begin{array}{l}{\sigma _x}^2 = \frac{{\sum {{x_i}^2} }}{n} - {{\bar x}^2}\\\therefore 25 = \frac{{\sum {{x_i}^2} }}{{20}} - {20^2}\\\therefore 425 = \frac{{\sum {{x_i}^2} }}{{20}}\\\therefore \sum {{x_i}^2}  = 8500\end{array}$

Corrected ∑xi2 = 8500 – (wrong value)2 + (correct value)2

= 8500 – 900 + 169

= 7769

Corrected variance = $\begin{array}{l} = \frac{{corrected\sum {{x_i}^2} }}{n} - {(Corrected{\rm{ }}Mean)^2}\\ = \frac{{7769}}{{20}} - {(19.5)^2}\\ = 21.73\end{array}$

Corrected S.D. = $\sqrt {21.73} $ = 4.66

Hence, the corrected mean and S.D. are 19.15 cm and 4.66 cm respectively.

b) The arithmetic mean and standard deviation of 21 observations are 40 and 8 respectively. At the time of calculation, if one item 35 is wrongly recorded. Find the new standard deviation of the items when the wrongly recorded item is omitted.

Solution:

Number of observations (n)=21
Incorrect mean =40
Incorrect standard deviation =8

\[\bar x = \frac{1}{n}\sum\limits_{i = 1}^{21} {{x_i}} \]

\[or,\;{\rm{40  = }}\frac{1}{{21}}\sum\limits_{i = 1}^{21} {{x_i}} \]

\[or,\sum\limits_{i = 1}^{21} {{x_i}}  = 840\]

So, the incorrect sum of observations =840
Correct sum of observation =840−35=805

Correct Mean = $\frac{{Correct{\rm{ Sum }}}}{{21 - 1}} = \frac{{805}}{{20}} = 40.25$ [since one is omitted.]

Getting Info...

About the Author

A free online educational resource provider.

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.