Hey Grade 12 Students, your exams are near so work hard.

Real Logic, Sets and Real Number System Exercise: 1.4 Class 11 Basic Mathematics Solution [NEB UPDATED]

Exercise 1.4

1) Evaluate:

Solution:

a) |–2| + 4 = 2 + 4 = 6

b) |–5| + |–2| –3 = 5 + 2 – 3 = 4

c) 2 + |–3| – |–5| = 2 + 3 – 5 = 0

d) |3 – |–5|| = |3 – 5| = |–2| = 2

 

2) Let (i) x=2,y=3 (ii) x=2, y=-3 verify each of the followings:

Solution for (i):

Here, x = 2 and y = 3.

(a) |x|+|y| ≤ |x+y|

 |x+y| = |2+3| = 5

And |x| + |y| = |2| + |3| = 5

Hence, |x|+|y| = |x+y| 

(b) |x – y| ≥ |x|–|y|

 |x – y| = |2 – 3| = 1

And |x|–|y| = |2|–|3| =  – 1

Hence, |x – y| > |x|–|y| 

(c) |xy| = |x|.|y|

|xy| = |2.3| = |6| = 6

|x|.|y| = |2|.|3| = |6| = 6.

Hence, |xy| = |x|.|y|

(d) $\[\left| {\left. {\frac{x}{y}} \right|} \right. = \frac{{|x|}}{{|y|}}\]$

Or, $\left| {\frac{{\rm{x}}}{{\rm{y}}}} \right|$ = $\left| {\frac{2}{3}} \right| = \frac{2}{3}$ and $\frac{{\left| {\rm{x}} \right|}}{{\left| {\rm{y}} \right|}} = \frac{{\left| 2 \right|}}{{\left| 3 \right|}} = \frac{2}{3}$

Hence, $\left| {\frac{{\rm{x}}}{{\rm{y}}}} \right| = \frac{{\left| {\rm{x}} \right|}}{{\left| {\rm{y}} \right|}}{\rm{\: }}$

 

Solution for (ii):

Here, x = 2 and y =  – 3

(a) |x|+|y| ≤ |x+y|

 |x+y| = |2 – 3| = |–1| = 1

And |x|–|y| = |2| + |–3| = 2 + 3 = 5

Hence, |x+y| < |x|+|y|. 

(b) |x – y| ≥ |x|–|y|

 |x – y| = |2+3| = 5

And |x|–|y| = |2|–|–3| = 2 – 3  =  – 1

Hence, |x – y| > |x|–|y|

(c) |xy| = |x|.|y|

|xy| = |2.(–3)| = |–6| = 6

|x|.|y| = |2|.|–3| = |6| = 6.

Hence, |xy| = |x|.|y|

(d) $\[\left| {\left. {\frac{x}{y}} \right|} \right. = \frac{{|x|}}{{|y|}}\]$

Or, $\left| {\frac{{\rm{x}}}{{\rm{y}}}} \right|$ = $\left| {\frac{2}{{ - 3}}} \right| = \frac{2}{3}$ and $\frac{{\left| {\rm{x}} \right|}}{{\left| {\rm{y}} \right|}} = \frac{{\left| 2 \right|}}{{\left| { - 3} \right|}} = \frac{2}{3}$

Hence, $\left| {\frac{{\rm{x}}}{{\rm{y}}}} \right| = \frac{{\left| {\rm{x}} \right|}}{{\left| {\rm{y}} \right|}}{\rm{\: }}$

 

3) Solve the following inequalities:

Solution:

a) x– 1 > 2

Solution:

x– 1 > 2

or, x – 1 + 1>2+1

So, x >3 

b) x – 3 ≤ 5

Solution:

x – 3 ≤ 5

or, x – 3 + 3 ≤ 5 + 3

or, x ≤ 8 

c) – 1 < x – 2 < 3

 – 1 < x – 2 < 3

Or,  – 1 + 2 < x – 2 + 2< 3 +2

Or, 1 < x < 5 

d)  – 3 ≤ 2x – 1 ≤ 5

Solution:

 – 3 ≤ 2x – 1 ≤ 5

or,  – 3 + 1 ≤ 2x – 1 + 1 ≤ 5 + 1

or,  – 2 ≤ 2x ≤ 6

So,  – 1 ≤ x ≤ 3.

e. x2 – 2x > 0

Solution:

x2 – 2x > 0

Corresponding equation is x2 – 2x = 0

or, x(x – 2) = 0

So, x = 0, 2.

Let us see the following possible intervals and the sign of x(x – 2) in three intervals.

Sign of→

Intervals

X

X – 2

X(x – 2)

 – ∞ to 0

0 to 2

2 to ∞

 –

+

+

 –

 –

+

+

 –

+

 

From the above table, the possible intervals are (– ∞, 0) and (2, ∞).

So, the required solution is x ԑ (– ∞, 0) U (2, ∞).

f) 6 + 5x – x2 ≥ 0

Solution:

6 + 5x – x2 ≥ 0

(or x2 – 5x – 6 ≤ 0)

Corresponding equation is 6 + 5x – x2 = 0

Or, 6 + 6x – x – x2 = 0

Or, 6(1 + x) – x (1+x) = 0

Or, (1+x)(6 – x) = 0

Or,  – (x+1)(x – 6) = 0

So, x = 6,  –1.

Let us see the following possible intervals and the sign of –(x – 6)(x + 1) in these intervals. 

                                Sign of→

Intervals

(x – 6)

(x + 1)

 – (x – 6)(x + 1)

 – ∞ to  – 1

 – 1 to 6

6 to ∞

 –

 –

+

 –

+

+

 –

+

 –

From the above table the possible interval is  [–1, 6].

So, required solution is x ԑ [–1, 6].

 

g) $\frac{{{\rm{x}}\left( {{\rm{x}} + 2} \right)}}{{{\rm{x}} - 1}}$ ≤ 0

Solution:

$\frac{{{\rm{x}}\left( {{\rm{x}} + 2} \right)}}{{{\rm{x}} - 1}}$ ≤ 0 

Corresponding equation is $\frac{{{\rm{x}}\left( {{\rm{x}} + 2} \right)}}{{{\rm{x}} - 1}}$ = 0

Or, x (x + 2) = 0

So, x = 0,  –2.

Also, the point x = 1.

Let us see the following possible intervals and the sign of $\frac{{{\rm{x}}\left( {{\rm{x}} + 2} \right)}}{{{\rm{x}} - 1}}$ in three intervals.

                                                                Sign of→

Intervals

x

X + 2

$\frac{1}{{{\rm{x}} - 1}}$

$\frac{{{\rm{x}}\left( {{\rm{x}} + 2} \right)}}{{{\rm{x}} - 1}}$

 – ∞ to  – 2

 – 2 to 0

0 to 1

 –

 –

+

 –

+

+

 –

 –

 –

 –
+

 –

From the table, possible intervals are (–∞,  –2] and [0, 1].

So, the required solution is (–∞,  –2] U [0, 1).

4. a) Let A=[-3,1] and B=[-2,4]. Perform the indicated operations:

Solution:

A = [–3, 1) and B[–2, 4]

Now, 

i) A U B

A U B = [–3, 1) U [–2, 4]

= {x: –3 ≤ x < 1} U {x: –2 ≤ x ≤ 4} = (x: –3 ≤ x ≤ 4} = [–3, 4]

ii) A ∩ B

A ∩ B = [–3, 1) ∩ [–2, 4]

= {x: –3 ≤ x < 1} ∩ {x: –2 ≤ x ≤ 4}

= {x: –2≤x<1}

= [–2, 1)

iii) A – B

A – B = [–3, 1) –[–2, 4]

= {x: –3 ≤ x <1} – {x: –2 ≤ x ≤ 4} = {x: –3 ≤ x < –2} = [–3, –2)

iv) B – A

B – A = [–2, 4] – [–3, 1]

= {x: –2≤x≤4} – {x: –3≤x<1} = {x:1≤x≤4} = [1, 4]

(b) If A = (–1, 4) and B[3, 5], find A U B, A ∩ B and A – B.

A = (–1, 4) and B[3, 5]

Now,

A U B = (–1, 4) U [3, 5)

= {x: –1< x < 4} U{x: 3≤ x < 5}={x: -1<x<5}=(-1,5)

A ∩ B = (–1, 4) ∩ [3, 5)

= {x: –1< x < 4} ∩ {x: 3≤ x < 5} = {x: 3≤x<4} = [3, 4)

A – B = (–1, 4) – [3, 5]

= {x: –1 < x <4} – {x: 3 ≤ x < 5} = {x: –1 < x < 3} = (–1, 3)

 

5) Write the following without using the absolute sign:

(a) |x| < 4

Solution:

|x| < 4

So,  – 4 < x < 4.

(b) |x – 3| < 2

Solution:

|x – 3| < 2

=  – 2 < x – 3 < 2

=  – 2 + 3 < x – 3 + 3 < 2 + 3

So, 1 < x <5.

(c) |2x + 1| ≤ 3

Solution:

|2x + 1| ≤ 3

=  – 3 ≤ 2x + 1 ≤ 3

=  – 3 – 1 ≤ 2x + 1 – 1 ≤ 3 – 1

=  – 4 ≤ 2x ≤ 2

So,  – 2 ≤ x ≤ 1 

(d) |2x – 1} ≤ 5

Solution:

|2x – 1} ≤ 5

=  – 5 ≤ 2x – 1 ≤ 5

=  – 5 + 1 ≤ 2x – 1 + 1 ≤ 5 + 1

=  – 4 ≤ 2x ≤ 6

So,  – 2 ≤ x ≤ 3

 

6) Rewrite the following inequalities using absolute sign:

(a) – 5 < x < 7

Solution: 

 – 5 < x < 7

=  – 5 – 1< x – 1 < 7 – 1

=  – 6 < x – 1 < 6

So, |x – 1| < 6.

(b)  – 3 ≤ x ≤  – 1

Solution: 

 – 3 ≤ x ≤  – 1

=  – 3 + 2 ≤ x + 2 ≤  – 1 + 2

=  – 1 ≤ x + 2 ≤ 1

So, |x + 2| ≤ 1 

(c) – 3 < x < 4

 Solution: 

– 3 < x < 4

=  – 6 < 2x < 8

=  – 6 – 1 < 2x – 1 < 8 – 1

=  – 7 < 2x – 1 < 7

So, |2x – 1| < 7 

(d)  – 4 ≤ x ≤  – 1

Solution: 

 – 4 ≤ x ≤  – 1

=  – 8 ≤ 2x ≤  – 2.

=  – 8 + 5 ≤ 2x + 5 ≤  – 2 + 5

=  – 3 ≤ 2x + 5 ≤ 3

So, |2x + 5| ≤ 3.

 

7) Solve the following inequalities:

(a) |x + 2| < 4

Solution:

|x + 2| < 4

=  – 4 < x + 2 < 4

=  – 4  – 2 < x + 2 – 2 < 4 – 2

=  – 6 < x < 2.

So, the solution is {x: –6 < x < 2} and the graph is:

 

(b) |x – 1| ≤ 2

Solution:

|x – 1| ≤ 2

=  – 2 ≤ x – 1 ≤ 2

=  – 2 + 1 ≤ x – 1 + 1≤2 + 1

=  – 1 ≤ x ≤ 3.

So, the solution is {x: –1 ≤ x ≤ 3} and the graph is:

(c) |2x + 3| ≤ 1

Solution:

|2x + 3| ≤ 1.

=  – 1 ≤ 2x + 3 ≤ 1

=  – 1 – 3 ≤ 2x +3 –3 ≤ 1 –3

=  – 4 ≤ 2x ≤  –2.

=  – 2 ≤ x ≤  – 1

So, the solution is {x: –2 ≤ x ≤ –1} and the graph is: 

(d)|x-1|>1     

Solution:

Here, two cases arises,

Case I:

When (x – 1) > 0 then.

= x – 1 + 1 > 1 + 1

So, x > 2, i.e. x ԑ (2, ∞)

Case II:

When (x – 1) < 0 then,

= x – 1 < – 1

= x – 1 + 1 < – 1 + 1

So, x < 0 i.e. x ԑ (–∞, 0)

Hence, the required solution of |x – 1| > 1 is {x:x< 0 or x > 2} i.e. x ԑ (–∞, 0) U (2, ∞)

The graph is:

(e) |2x + 1| ≥ 3

Solution:

|2x + 1| ≥ 3

Here, two cases arises

Case I:

When (2x + 1) > 0 then.

(2x + 1) ≥ 3

= 2x + 1 – 1 ≥ 3 – 1

= 2x ≥ 2

So, x ≥ 1 i.e. x ԑ [1, ∞)

Case II:

When (2x + 1) < 0 then,

 – (2x + 1) > 3

= 2x + 1 ≤  – 3

= 2x + 1 – 1 ≤  – 3 – 1

= 2x ≤  – 4

So, x ≤  – 2.i.e. x ԑ (–∞,  – 2]

Thus, the required solution is {x:x ≤  – 2 or x ≥ 1}

I.e. x ԑ (–∞. – 2] U [1, ∞) and the graph is:

8) Using the properties of real numbers, Prove that:

a)a+b=b+ca=c

Here,

a + b = b + c

= a + b – b = b – b + c

So, a = c 

b) ac = bc⇒a=b

Here, ac = bc

= (ac)c – 1 = (bc)c – 1

= a(cc – 1) = b(cc – 1)      [Associativity]

= a.1 = b.1

So, a = b 

c)a<b⇒a+c<b+c

Here, a < b.

So, a + c < b + c  [adding c on both sides] 

d)a<b and c<d⇒a+x<b+d

 Here, a < b.

= a – b < 0 ….(i)

And c < d

= c – d < 0 ….(ii)

Adding (i) and (ii) we have,

a – b + c – d < 0

= a – b + b + c – d + d < b + d       [Adding b + d on both sides]

So, a + c < b + d 

(e) a>b and c<0⇒ac<bc

 Here, a > b

= (a –b)c < 0.c                    [c<0]

Or, ac – bc< 0

Or, ac < bc

(f)a>b and c>0 $\frac{{\rm{a}}}{{\rm{c}}}$>$\frac{{\rm{b}}}{{\rm{c}}}$

Here, a > b

= a – b > 0

= $\frac{{{\rm{a}} - {\rm{b}}}}{{\rm{c}}}$>$\frac{0}{{\rm{c}}}$ [c >0]

= $\frac{{\rm{a}}}{{\rm{c}}}$ – $\frac{{\rm{b}}}{{\rm{c}}}$> 0

= $\frac{{\rm{a}}}{{\rm{c}}}$ – $\frac{{\rm{b}}}{{\rm{c}}}$ + $\frac{{\rm{b}}}{{\rm{c}}}$>$\frac{{\rm{b}}}{{\rm{c}}}{\rm{\: }}$    

$\frac{{\rm{b}}}{{\rm{c}}}$  [Adding on both sides]

So, $\frac{{\rm{a}}}{{\rm{c}}}$>$\frac{{\rm{b}}}{{\rm{c}}}$

Getting Info...

About the Author

A free online educational resource provider.

Post a Comment

Please do not enter any spam link in the comment box.
Cookie Consent
We serve cookies on this site to analyze traffic, remember your preferences, and optimize your experience.
Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.